(* -*- mode: coq; coq-prog-args: ("-R" "." "Top" "-top" "bug_bad_induction_01") -*- *) (* File reduced by coq-bug-finder from original input, then from 1889 lines to 144 lines, then from 158 lines to 144 lines *) (* coqc version 8.5pl1 (April 2016) compiled on Apr 18 2016 14:48:5 with OCaml 4.02.3 coqtop version 8.5pl1 (April 2016) *) Axiom proof_admitted : False. Tactic Notation "admit" := abstract case proof_admitted. Global Set Universe Polymorphism. Global Set Asymmetric Patterns. Notation "'exists' x .. y , p" := (sigT (fun x => .. (sigT (fun y => p)) ..)) (at level 200, x binder, right associativity, format "'[' 'exists' '/ ' x .. y , '/ ' p ']'") : type_scope. Definition relation (A : Type) := A -> A -> Type. Class Transitive {A} (R : relation A) := transitivity : forall x y z, R x y -> R y z -> R x z. Tactic Notation "etransitivity" open_constr(y) := let R := match goal with |- ?R ?x ?z => constr:(R) end in let x := match goal with |- ?R ?x ?z => constr:(x) end in let z := match goal with |- ?R ?x ?z => constr:(z) end in refine (@transitivity _ R _ x y z _ _). Tactic Notation "etransitivity" := etransitivity _. Notation "( x ; y )" := (existT _ x y) : fibration_scope. Open Scope fibration_scope. Notation pr1 := projT1. Notation pr2 := projT2. Notation "x .1" := (projT1 x) (at level 3) : fibration_scope. Notation "x .2" := (projT2 x) (at level 3) : fibration_scope. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. Arguments idpath {A a} , [A] a. Arguments paths_rect [A] a P f y p. Notation "x = y :> A" := (@paths A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Delimit Scope path_scope with path. Local Open Scope path_scope. Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. Instance transitive_paths {A} : Transitive (@paths A) | 0 := @concat A. Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end. Notation "1" := idpath : path_scope. Notation "p @ q" := (concat p q) (at level 20) : path_scope. Notation "p ^" := (inverse p) (at level 3) : path_scope. Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end. Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope. Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end. Definition apD {A:Type} {B:A->Type} (f:forall a:A, B a) {x y:A} (p:x=y): p # (f x) = f y := match p with idpath => idpath end. Lemma transport_compose {A B} {x y : A} (P : B -> Type) (f : A -> B) (p : x = y) (z : P (f x)) : transport (fun x => P (f x)) p z = transport P (ap f p) z. admit. Defined. Local Open Scope path_scope. Generalizable Variables X A B C f g n. Definition path_sigma_uncurried {A : Type} (P : A -> Type) (u v : sigT P) (pq : {p : u.1 = v.1 & p # u.2 = v.2}) : u = v := match pq with | existT p q => match u, v return (forall p0 : (u.1 = v.1), (p0 # u.2 = v.2) -> (u=v)) with | (x;y), (x';y') => fun p1 q1 => match p1 in (_ = x'') return (forall y'', (p1 # y = y'') -> (x;y)=(x'';y'')) with | idpath => fun y' q2 => match q2 in (_ = y'') return (x;y) = (x;y'') with | idpath => 1 end end y' q1 end p q end. Definition path_sigma {A : Type} (P : A -> Type) (u v : sigT P) (p : u.1 = v.1) (q : p # u.2 = v.2) : u = v := path_sigma_uncurried P u v (p;q). Definition projT1_path `{P : A -> Type} {u v : sigT P} (p : u = v) : u.1 = v.1 := ap (@projT1 _ _) p. Notation "p ..1" := (projT1_path p) (at level 3) : fibration_scope. Definition projT2_path `{P : A -> Type} {u v : sigT P} (p : u = v) : p..1 # u.2 = v.2 := (transport_compose P (@projT1 _ _) p u.2)^ @ (@apD {x:A & P x} _ (@projT2 _ _) _ _ p). Notation "p ..2" := (projT2_path p) (at level 3) : fibration_scope. Definition eta_path_sigma_uncurried `{P : A -> Type} {u v : sigT P} (p : u = v) : path_sigma_uncurried _ _ _ (p..1; p..2) = p. admit. Defined. Definition eta_path_sigma `{P : A -> Type} {u v : sigT P} (p : u = v) : path_sigma _ _ _ (p..1) (p..2) = p := eta_path_sigma_uncurried p. Definition path_path_sigma_uncurried {A : Type} (P : A -> Type) (u v : sigT P) (p q : u = v) (rs : {r : p..1 = q..1 & transport (fun x => transport P x u.2 = v.2) r p..2 = q..2}) : p = q. Proof. destruct rs, p, u. etransitivity; [ | apply eta_path_sigma ]. simpl in *. induction p0. admit. Defined.