Require Import TestSuite.admit. (* File reduced by coq-bug-finder from original input, then from 9593 lines to 104 lines, then from 187 lines to 103 lines, then from 113 lines to 90 lines *) (* coqc version trunk (October 2014) compiled on Oct 1 2014 18:13:54 with OCaml 4.01.0 coqtop version cagnode16:/afs/csail.mit.edu/u/j/jgross/coq-trunk,trunk (68846802a7be637ec805a5e374655a426b5723a5) *) Axiom transport : forall {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x), P y. Inductive trunc_index := minus_two | trunc_S (_ : trunc_index). Axiom IsTrunc : trunc_index -> Type -> Type. Existing Class IsTrunc. Axiom Contr : Type -> Type. Inductive Trunc (n : trunc_index) (A :Type) : Type := tr : A -> Trunc n A. Module NonPrim. Unset Primitive Projections. Set Implicit Arguments. Record sigT {A} (P : A -> Type) := existT { projT1 : A ; projT2 : P projT1 }. Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope. Unset Implicit Arguments. Notation "( x ; y )" := (existT _ x y) : fibration_scope. Open Scope fibration_scope. Notation pr1 := projT1. Notation pr2 := projT2. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope. Definition hfiber {A B : Type} (f : A -> B) (y : B) := { x : A & f x = y }. Class IsConnected (n : trunc_index) (A : Type) := isconnected_contr_trunc :> Contr (Trunc n A). Axiom isconnected_elim : forall {n} {A} `{IsConnected n A} (C : Type) `{IsTrunc n C} (f : A -> C), { c:C & forall a:A, f a = c }. Class IsConnMap (n : trunc_index) {A B : Type} (f : A -> B) := isconnected_hfiber_conn_map :> forall b:B, IsConnected n (hfiber f b). Definition conn_map_elim {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall b:B, P b. Proof. intros b. unshelve (refine (pr1 (isconnected_elim (A:=hfiber f b) _ _))). intro x. exact (transport P x.2 (d x.1)). Defined. Definition conn_map_elim' {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall b:B, P b. Proof. intros b. unshelve (refine (pr1 (isconnected_elim (A:=hfiber f b) _ _))). intros [a p]. exact (transport P p (d a)). Defined. Definition conn_map_comp {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall a:A, conn_map_elim f P d (f a) = d a /\ conn_map_elim' f P d (f a) = d a. Proof. intros a. unfold conn_map_elim, conn_map_elim'. Set Printing Coercions. set (fibermap := fun a0p : hfiber f (f a) => let (a0, p) := a0p in transport P p (d a0)). Set Printing Implicit. let G := match goal with |- ?G => constr:(G) end in first [ match goal with | [ |- (@isconnected_elim n (@hfiber A B f (f a)) (@isconnected_hfiber_conn_map n A B f H (f a)) (P (f a)) (HP (f a)) (fun x : @hfiber A B f (f a) => @transport B P (f x.1) (f a) x.2 (d x.1))).1 = d a /\ _ ] => idtac end | fail 1 "projection names should be folded, [let] should generate unfolded projections, goal:" G ]; first [ match goal with | [ |- _ /\ (@isconnected_elim n (@hfiber A B f (f a)) (@isconnected_hfiber_conn_map n A B f H (f a)) (P (f a)) (HP (f a)) fibermap).1 = d a ] => idtac end | fail 1 "destruct should generate unfolded projections, as should [let], goal:" G ]. admit. Defined. End NonPrim. Module Prim. Set Primitive Projections. Set Implicit Arguments. Record sigT {A} (P : A -> Type) := existT { projT1 : A ; projT2 : P projT1 }. Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope. Unset Implicit Arguments. Notation "( x ; y )" := (existT _ x y) : fibration_scope. Open Scope fibration_scope. Notation pr1 := projT1. Notation pr2 := projT2. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope. Definition hfiber {A B : Type} (f : A -> B) (y : B) := { x : A & f x = y }. Class IsConnected (n : trunc_index) (A : Type) := isconnected_contr_trunc :> Contr (Trunc n A). Axiom isconnected_elim : forall {n} {A} `{IsConnected n A} (C : Type) `{IsTrunc n C} (f : A -> C), { c:C & forall a:A, f a = c }. Class IsConnMap (n : trunc_index) {A B : Type} (f : A -> B) := isconnected_hfiber_conn_map :> forall b:B, IsConnected n (hfiber f b). Definition conn_map_elim {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall b:B, P b. Proof. intros b. unshelve (refine (pr1 (isconnected_elim (A:=hfiber f b) _ _))). intro x. exact (transport P x.2 (d x.1)). Defined. Definition conn_map_elim' {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall b:B, P b. Proof. intros b. unshelve (refine (pr1 (isconnected_elim (A:=hfiber f b) _ _))). intros [a p]. exact (transport P p (d a)). Defined. Definition conn_map_comp {n : trunc_index} {A B : Type} (f : A -> B) `{IsConnMap n _ _ f} (P : B -> Type) {HP : forall b:B, IsTrunc n (P b)} (d : forall a:A, P (f a)) : forall a:A, conn_map_elim f P d (f a) = d a /\ conn_map_elim' f P d (f a) = d a. Proof. intros a. unfold conn_map_elim, conn_map_elim'. Set Printing Coercions. set (fibermap := fun a0p : hfiber f (f a) => let (a0, p) := a0p in transport P p (d a0)). Set Printing Implicit. let G := match goal with |- ?G => constr:(G) end in first [ match goal with | [ |- (@isconnected_elim n (@hfiber A B f (f a)) (@isconnected_hfiber_conn_map n A B f H (f a)) (P (f a)) (HP (f a)) (fun x : @hfiber A B f (f a) => @transport B P (f x.1) (f a) x.2 (d x.1))).1 = d a /\ _ ] => idtac end | fail 1 "projection names should be folded, [let] should generate unfolded projections, goal:" G ]; first [ match goal with | [ |- _ /\ (@isconnected_elim n (@hfiber A B f (f a)) (@isconnected_hfiber_conn_map n A B f H (f a)) (P (f a)) (HP (f a)) fibermap).1 = d a ] => idtac end | fail 1 "destruct should generate unfolded projections, as should [let], goal:" G ]. admit. Defined. End Prim.