Require Import TestSuite.admit. Generalizable All Variables. Set Implicit Arguments. Set Universe Polymorphism. Axiom admit : forall {T}, T. Reserved Infix "o" (at level 40, left associativity). Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }. Record Equiv A B := { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }. Existing Instance equiv_isequiv. Delimit Scope equiv_scope with equiv. Local Open Scope equiv_scope. Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope. Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope. Axiom IsHSet : Type -> Type. Existing Class IsHSet. Definition trunc_equiv' `(f : A <~> B) `{IsHSet A} : IsHSet B := admit. Delimit Scope morphism_scope with morphism. Delimit Scope category_scope with category. Delimit Scope object_scope with object. Record PreCategory := { object :> Type; morphism : object -> object -> Type; compose : forall s d d', morphism d d' -> morphism s d -> morphism s d' where "f 'o' g" := (compose f g); trunc_morphism : forall s d, IsHSet (morphism s d) }. Bind Scope category_scope with PreCategory. Infix "o" := (@compose _ _ _ _) : morphism_scope. Delimit Scope functor_scope with functor. Record Functor (C D : PreCategory) := { object_of :> C -> D; morphism_of : forall s d, morphism C s d -> morphism D (object_of s) (object_of d) }. Bind Scope functor_scope with Functor. Arguments morphism_of [C%category] [D%category] F%functor [s%object d%object] m%morphism : rename, simpl nomatch. Notation "F '_1' m" := (morphism_of F m) (at level 10, no associativity) : morphism_scope. Local Open Scope morphism_scope. Class IsIsomorphism {C : PreCategory} {s d} (m : morphism C s d) := { morphism_inverse : morphism C d s }. Local Notation "m ^-1" := (morphism_inverse (m := m)) : morphism_scope. Class Isomorphic {C : PreCategory} s d := { morphism_isomorphic :> morphism C s d; isisomorphism_isomorphic :> IsIsomorphism morphism_isomorphic }. Coercion morphism_isomorphic : Isomorphic >-> morphism. Local Infix "<~=~>" := Isomorphic (at level 70, no associativity) : category_scope. Definition isisomorphism_inverse `(@IsIsomorphism C x y m) : IsIsomorphism m^-1 := {| morphism_inverse := m |}. Global Instance isisomorphism_compose `(@IsIsomorphism C y z m0) `(@IsIsomorphism C x y m1) : IsIsomorphism (m0 o m1). admit. Defined. Section composition. Variable C : PreCategory. Variable D : PreCategory. Variable E : PreCategory. Variable G : Functor D E. Variable F : Functor C D. Definition composeF : Functor C E := Build_Functor C E (fun c => G (F c)) (fun _ _ m => morphism_of G (morphism_of F m)). End composition. Infix "o" := composeF : functor_scope. Delimit Scope natural_transformation_scope with natural_transformation. Record NaturalTransformation C D (F G : Functor C D) := { components_of :> forall c, morphism D (F c) (G c) }. Section compose. Variable C : PreCategory. Variable D : PreCategory. Variables F F' F'' : Functor C D. Variable T' : NaturalTransformation F' F''. Variable T : NaturalTransformation F F'. Local Notation CO c := (T' c o T c). Definition composeT : NaturalTransformation F F'' := Build_NaturalTransformation F F'' (fun c => CO c). End compose. Section whisker. Variable C : PreCategory. Variable D : PreCategory. Variable E : PreCategory. Section L. Variable F : Functor D E. Variables G G' : Functor C D. Variable T : NaturalTransformation G G'. Local Notation CO c := (morphism_of F (T c)). Definition whisker_l := Build_NaturalTransformation (F o G) (F o G') (fun c => CO c). End L. Section R. Variables F F' : Functor D E. Variable T : NaturalTransformation F F'. Variable G : Functor C D. Local Notation CO c := (T (G c)). Definition whisker_r := Build_NaturalTransformation (F o G) (F' o G) (fun c => CO c). End R. End whisker. Infix "o" := composeT : natural_transformation_scope. Infix "oL" := whisker_l (at level 40, left associativity) : natural_transformation_scope. Infix "oR" := whisker_r (at level 40, left associativity) : natural_transformation_scope. Section path_natural_transformation. Variable C : PreCategory. Variable D : PreCategory. Variables F G : Functor C D. Lemma equiv_sig_natural_transformation : { CO : forall x, morphism D (F x) (G x) | forall s d (m : morphism C s d), CO d o F _1 m = G _1 m o CO s } <~> NaturalTransformation F G. admit. Defined. Global Instance trunc_natural_transformation : IsHSet (NaturalTransformation F G). Proof. eapply trunc_equiv'; [ exact equiv_sig_natural_transformation | ]. admit. Qed. End path_natural_transformation. Definition functor_category (C D : PreCategory) : PreCategory := @Build_PreCategory (Functor C D) (@NaturalTransformation C D) (@composeT C D) _. Notation "C -> D" := (functor_category C D) : category_scope. Definition NaturalIsomorphism (C D : PreCategory) F G := @Isomorphic (C -> D) F G. Coercion natural_transformation_of_natural_isomorphism C D F G (T : @NaturalIsomorphism C D F G) : NaturalTransformation F G := T : morphism _ _ _. Local Infix "<~=~>" := NaturalIsomorphism : natural_transformation_scope. Global Instance isisomorphism_compose' `(T' : @NaturalTransformation C D F' F'') `(T : @NaturalTransformation C D F F') `{@IsIsomorphism (C -> D) F' F'' T'} `{@IsIsomorphism (C -> D) F F' T} : @IsIsomorphism (C -> D) F F'' (T' o T)%natural_transformation := @isisomorphism_compose (C -> D) _ _ T' _ _ T _. Section lemmas. Local Open Scope natural_transformation_scope. Variable C : PreCategory. Variable F : C -> PreCategory. Context {w x y z} {f : Functor (F w) (F z)} {f0 : Functor (F w) (F y)} {f1 : Functor (F x) (F y)} {f2 : Functor (F y) (F z)} {f3 : Functor (F w) (F x)} {f4 : Functor (F x) (F z)} {f5 : Functor (F w) (F z)} {n : f5 <~=~> (f4 o f3)%functor} {n0 : f4 <~=~> (f2 o f1)%functor} {n1 : f0 <~=~> (f1 o f3)%functor} {n2 : f <~=~> (f2 o f0)%functor}. Lemma p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper' : @IsIsomorphism (_ -> _) _ _ (n2 ^-1 o (f2 oL n1 ^-1 o (admit o (n0 oR f3 o n))))%natural_transformation. Proof. eapply isisomorphism_compose'; [ eapply isisomorphism_inverse | eapply isisomorphism_compose'; [ admit | eapply isisomorphism_compose'; [ admit | eapply isisomorphism_compose'; [ admit | ]]]]. Set Printing All. Set Printing Universes. apply @isisomorphism_isomorphic. Qed. End lemmas.