(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* = 2 -> let head = if isApp c then fst (destApp c) else c in if eq_constr (Lazy.force coq_eq) head then None else (try let params, args = array_chop (Array.length args - 2) args in let env' = Environ.push_rel_context rels env in let evd, evar = Evarutil.new_evar sigma env' (new_Type ()) in let inst = mkApp (Lazy.force rewrite_relation_class, [| evar; mkApp (c, params) |]) in let _ = Typeclasses.resolve_one_typeclass env' evd inst in Some (it_mkProd_or_LetIn t rels) with _ -> None) | _ -> None let _ = Equality.register_is_applied_rewrite_relation is_applied_rewrite_relation let split_head = function hd :: tl -> hd, tl | [] -> assert(false) let new_cstr_evar (goal,cstr) env t = let cstr', t = Evarutil.new_evar cstr env t in (goal, cstr'), t let new_goal_evar (goal,cstr) env t = let goal', t = Evarutil.new_evar goal env t in (goal', cstr), t let build_signature evars env m (cstrs : (types * types option) option list) (finalcstr : (types * types option) option) = let new_evar evars env t = new_cstr_evar evars env (* ~src:(dummy_loc, ImplicitArg (ConstRef (Lazy.force respectful), (n, Some na))) *) t in let mk_relty evars env ty obj = match obj with | None | Some (_, None) -> let relty = mk_relation ty in new_evar evars env relty | Some (x, Some rel) -> evars, rel in let rec aux env evars ty l = let t = Reductionops.whd_betadeltaiota env (fst evars) ty in match kind_of_term t, l with | Prod (na, ty, b), obj :: cstrs -> if noccurn 1 b (* non-dependent product *) then let ty = Reductionops.nf_betaiota (fst evars) ty in let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in let evars, relty = mk_relty evars env ty obj in let newarg = mkApp (Lazy.force respectful, [| ty ; b' ; relty ; arg |]) in evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs else let (evars, b, arg, cstrs) = aux (Environ.push_rel (na, None, ty) env) evars b cstrs in let ty = Reductionops.nf_betaiota (fst evars) ty in let pred = mkLambda (na, ty, b) in let liftarg = mkLambda (na, ty, arg) in let arg' = mkApp (Lazy.force forall_relation, [| ty ; pred ; liftarg |]) in if obj = None then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs else error "build_signature: no constraint can apply on a dependent argument" | _, obj :: _ -> anomaly "build_signature: not enough products" | _, [] -> (match finalcstr with | None | Some (_, None) -> let t = Reductionops.nf_betaiota (fst evars) ty in let evars, rel = mk_relty evars env t None in evars, t, rel, [t, Some rel] | Some (t, Some rel) -> evars, t, rel, [t, Some rel]) in aux env evars m cstrs let proper_proof env evars carrier relation x = let goal = mkApp (Lazy.force proper_proxy_type, [| carrier ; relation; x |]) in new_cstr_evar evars env goal let extends_undefined evars evars' = let f ev evi found = found || not (Evd.mem evars ev) in fold_undefined f evars' false let find_class_proof proof_type proof_method env evars carrier relation = try let goal = mkApp (Lazy.force proof_type, [| carrier ; relation |]) in let evars', c = Typeclasses.resolve_one_typeclass env evars goal in if extends_undefined evars evars' then raise Not_found else mkApp (Lazy.force proof_method, [| carrier; relation; c |]) with e when Logic.catchable_exception e -> raise Not_found let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env let get_transitive_proof env = find_class_proof transitive_type transitive_proof env exception FoundInt of int let array_find (arr: 'a array) (pred: int -> 'a -> bool): int = try for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (FoundInt i) done; raise Not_found with FoundInt i -> i type hypinfo = { cl : clausenv; prf : constr; car : constr; rel : constr; l2r : bool; c1 : constr; c2 : constr; c : (Tacinterp.interp_sign * Genarg.glob_constr_and_expr with_bindings) option; abs : (constr * types) option; flags : Unification.unify_flags; } let goalevars evars = fst evars let cstrevars evars = snd evars let evd_convertible env evd x y = try ignore(Evarconv.the_conv_x env x y evd); true with _ -> false let rec decompose_app_rel env evd t = match kind_of_term t with | App (f, args) -> if Array.length args > 1 then let fargs, args = array_chop (Array.length args - 2) args in mkApp (f, fargs), args else let (f', args) = decompose_app_rel env evd args.(0) in let ty = Typing.type_of env evd args.(0) in let f'' = mkLambda (Name (id_of_string "x"), ty, mkLambda (Name (id_of_string "y"), lift 1 ty, mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |]))) in (f'', args) | _ -> error "The term provided is not an applied relation." (* let nc, c', cl = push_rel_context_to_named_context env c in *) (* let env' = reset_with_named_context nc env in *) let decompose_applied_relation env sigma flags orig (c,l) left2right = let c' = c in let ctype = Typing.type_of env sigma c' in let find_rel ty = let eqclause = Clenv.make_clenv_binding_env_apply env sigma None (c',ty) l in let (equiv, args) = decompose_app_rel env eqclause.evd (Clenv.clenv_type eqclause) in let c1 = args.(0) and c2 = args.(1) in let ty1, ty2 = Typing.type_of env eqclause.evd c1, Typing.type_of env eqclause.evd c2 in if not (evd_convertible env eqclause.evd ty1 ty2) then None else Some { cl=eqclause; prf=(Clenv.clenv_value eqclause); car=ty1; rel = equiv; l2r=left2right; c1=c1; c2=c2; c=orig; abs=None; flags = flags } in match find_rel ctype with | Some c -> c | None -> let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *) match find_rel (it_mkProd_or_LetIn t' ctx) with | Some c -> c | None -> error "The term does not end with an applied homogeneous relation." open Tacinterp let decompose_applied_relation_expr env sigma flags (is, (c,l)) left2right = let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma (c,l) in decompose_applied_relation env sigma flags (Some (is, (c,l))) cbl left2right let rewrite_db = "rewrite" let conv_transparent_state = (Idpred.empty, Cpred.full) let _ = Auto.add_auto_init (fun () -> Auto.create_hint_db false rewrite_db conv_transparent_state true) let rewrite_transparent_state () = Auto.Hint_db.transparent_state (Auto.searchtable_map rewrite_db) let rewrite_unif_flags = { Unification.modulo_conv_on_closed_terms = None; Unification.use_metas_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = empty_transparent_state; Unification.modulo_delta_types = full_transparent_state; Unification.check_applied_meta_types = true; Unification.resolve_evars = true; Unification.use_pattern_unification = true; Unification.use_meta_bound_pattern_unification = true; Unification.frozen_evars = ExistentialSet.empty; Unification.restrict_conv_on_strict_subterms = false; Unification.modulo_betaiota = false; Unification.modulo_eta = true; Unification.allow_K_in_toplevel_higher_order_unification = true } let rewrite2_unif_flags = { Unification.modulo_conv_on_closed_terms = Some conv_transparent_state; Unification.use_metas_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = empty_transparent_state; Unification.modulo_delta_types = conv_transparent_state; Unification.check_applied_meta_types = true; Unification.resolve_evars = true; Unification.use_pattern_unification = true; Unification.use_meta_bound_pattern_unification = true; Unification.frozen_evars = ExistentialSet.empty; Unification.restrict_conv_on_strict_subterms = false; Unification.modulo_betaiota = true; Unification.modulo_eta = true; Unification.allow_K_in_toplevel_higher_order_unification = true } let general_rewrite_unif_flags () = let ts = rewrite_transparent_state () in { Unification.modulo_conv_on_closed_terms = Some ts; Unification.use_metas_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = ts; Unification.modulo_delta_types = ts; Unification.check_applied_meta_types = true; Unification.resolve_evars = true; Unification.use_pattern_unification = true; Unification.use_meta_bound_pattern_unification = true; Unification.frozen_evars = ExistentialSet.empty; Unification.restrict_conv_on_strict_subterms = false; Unification.modulo_betaiota = true; Unification.modulo_eta = true; Unification.allow_K_in_toplevel_higher_order_unification = true } let convertible env evd x y = Reductionops.is_conv env evd x y let refresh_hypinfo env sigma hypinfo = if hypinfo.abs = None then let {l2r=l2r; c=c;cl=cl;flags=flags} = hypinfo in match c with | Some c -> (* Refresh the clausenv to not get the same meta twice in the goal. *) decompose_applied_relation_expr env sigma flags c l2r; | _ -> hypinfo else hypinfo let unify_eqn env sigma hypinfo t = if isEvar t then None else try let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in let left = if l2r then c1 else c2 in let env', prf, c1, c2, car, rel = match abs with | Some (absprf, absprfty) -> let env' = clenv_unify ~flags:rewrite_unif_flags CONV left t cl in env', prf, c1, c2, car, rel | None -> let env' = clenv_unify ~flags:!hypinfo.flags CONV left t cl in let env' = Clenvtac.clenv_pose_dependent_evars true env' in (* let env' = Clenv.clenv_pose_metas_as_evars env' (Evd.undefined_metas env'.evd) in *) let evd' = Typeclasses.resolve_typeclasses ~fail:true env'.env env'.evd in let env' = { env' with evd = evd' } in let nf c = Evarutil.nf_evar evd' (Clenv.clenv_nf_meta env' c) in let c1 = nf c1 and c2 = nf c2 and car = nf car and rel = nf rel and prf = nf (Clenv.clenv_value env') in let ty1 = Typing.type_of env'.env env'.evd c1 and ty2 = Typing.type_of env'.env env'.evd c2 in if convertible env env'.evd ty1 ty2 then ( if occur_meta_or_existential prf then hypinfo := refresh_hypinfo env env'.evd !hypinfo; env', prf, c1, c2, car, rel) else raise Reduction.NotConvertible in let res = if l2r then (prf, (car, rel, c1, c2)) else try (mkApp (get_symmetric_proof env env'.evd car rel, [| c1 ; c2 ; prf |]), (car, rel, c2, c1)) with Not_found -> (prf, (car, inverse car rel, c2, c1)) in Some (env'.evd, res) with e when Class_tactics.catchable e -> None (* let unify_eqn env sigma hypinfo t = *) (* if isEvar t then None *) (* else try *) (* let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in *) (* let left = if l2r then c1 else c2 in *) (* let evd', prf, c1, c2, car, rel = *) (* match abs with *) (* | Some (absprf, absprfty) -> *) (* let env' = clenv_unify allowK ~flags:rewrite_unif_flags CONV left t cl in *) (* env'.evd, prf, c1, c2, car, rel *) (* | None -> *) (* let cl' = Clenv.clenv_pose_metas_as_evars cl (Evd.undefined_metas cl.evd) in *) (* let sigma = cl'.evd in *) (* let c1 = Clenv.clenv_nf_meta cl' c1 *) (* and c2 = Clenv.clenv_nf_meta cl' c2 *) (* and prf = Clenv.clenv_nf_meta cl' prf *) (* and car = Clenv.clenv_nf_meta cl' car *) (* and rel = Clenv.clenv_nf_meta cl' rel *) (* in *) (* let sigma' = *) (* try Evarconv.the_conv_x ~ts:empty_transparent_state env t c1 sigma *) (* with Reduction.NotConvertible _ -> *) (* Evarconv.the_conv_x ~ts:conv_transparent_state env t c1 sigma *) (* in *) (* let sigma' = Evarconv.consider_remaining_unif_problems ~ts:conv_transparent_state env sigma' in *) (* let evd' = Typeclasses.resolve_typeclasses ~fail:true env sigma' in *) (* let nf c = Evarutil.nf_evar evd' c in *) (* let c1 = nf c1 and c2 = nf c2 *) (* and car = nf car and rel = nf rel *) (* and prf' = nf prf in *) (* if occur_meta_or_existential prf then *) (* hypinfo := refresh_hypinfo env evd' !hypinfo; *) (* evd', prf', c1, c2, car, rel *) (* in *) (* let res = *) (* if l2r then (prf, (car, rel, c1, c2)) *) (* else *) (* try (mkApp (get_symmetric_proof env Evd.empty car rel, *) (* [| c1 ; c2 ; prf |]), *) (* (car, rel, c2, c1)) *) (* with Not_found -> *) (* (prf, (car, inverse car rel, c2, c1)) *) (* in Some (evd', res) *) (* with Reduction.NotConvertible -> None *) (* | e when Class_tactics.catchable e -> None *) let unfold_impl t = match kind_of_term t with | App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) -> mkProd (Anonymous, a, lift 1 b) | _ -> assert false let unfold_all t = match kind_of_term t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match kind_of_term b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let unfold_forall t = match kind_of_term t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match kind_of_term b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let rec decomp_pointwise n c = if n = 0 then c else match kind_of_term c with | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) -> decomp_pointwise (pred n) relb | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) -> decomp_pointwise (pred n) (Reductionops.beta_applist (arelb, [mkRel 1])) | _ -> raise (Invalid_argument "decomp_pointwise") let rec apply_pointwise rel = function | arg :: args -> (match kind_of_term rel with | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) -> apply_pointwise relb args | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) -> apply_pointwise (Reductionops.beta_applist (arelb, [arg])) args | _ -> raise (Invalid_argument "apply_pointwise")) | [] -> rel let pointwise_or_dep_relation n t car rel = if noccurn 1 car then mkApp (Lazy.force pointwise_relation, [| t; lift (-1) car; lift (-1) rel |]) else mkApp (Lazy.force forall_relation, [| t; mkLambda (n, t, car); mkLambda (n, t, rel) |]) let lift_cstr env sigma evars (args : constr list) c ty cstr = let start env car = match cstr with | None | Some (_, None) -> Evarutil.e_new_evar evars env (mk_relation car) | Some (ty, Some rel) -> rel in let rec aux env prod n = if n = 0 then start env prod else match kind_of_term (Reduction.whd_betadeltaiota env prod) with | Prod (na, ty, b) -> if noccurn 1 b then let b' = lift (-1) b in let rb = aux env b' (pred n) in mkApp (Lazy.force pointwise_relation, [| ty; b'; rb |]) else let rb = aux (Environ.push_rel (na, None, ty) env) b (pred n) in mkApp (Lazy.force forall_relation, [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |]) | _ -> raise Not_found in let rec find env c ty = function | [] -> None | arg :: args -> try Some (aux env ty (succ (List.length args)), c, ty, arg :: args) with Not_found -> find env (mkApp (c, [| arg |])) (prod_applist ty [arg]) args in find env c ty args let unlift_cstr env sigma = function | None -> None | Some codom -> Some (decomp_pointwise 1 codom) type rewrite_flags = { under_lambdas : bool; on_morphisms : bool } let default_flags = { under_lambdas = true; on_morphisms = true; } type evars = evar_map * evar_map (* goal evars, constraint evars *) type rewrite_proof = | RewPrf of constr * constr | RewCast of cast_kind let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None type rewrite_result_info = { rew_car : constr; rew_from : constr; rew_to : constr; rew_prf : rewrite_proof; rew_evars : evars; } type rewrite_result = rewrite_result_info option type strategy = Environ.env -> identifier list -> constr -> types -> constr option -> evars -> rewrite_result option let get_rew_rel r = match r.rew_prf with | RewPrf (rel, prf) -> rel | RewCast c -> mkApp (Coqlib.build_coq_eq (), [| r.rew_car; r.rew_from; r.rew_to |]) let get_rew_prf r = match r.rew_prf with | RewPrf (rel, prf) -> rel, prf | RewCast c -> let rel = mkApp (Coqlib.build_coq_eq (), [| r.rew_car |]) in rel, mkCast (mkApp (Coqlib.build_coq_eq_refl (), [| r.rew_car; r.rew_from |]), c, mkApp (rel, [| r.rew_from; r.rew_to |])) let resolve_subrelation env avoid car rel prf rel' res = if eq_constr rel rel' then res else (* try let evd' = Evarconv.the_conv_x env rel rel' res.rew_evars in *) (* { res with rew_evars = evd' } *) (* with NotConvertible -> *) let app = mkApp (Lazy.force subrelation, [|car; rel; rel'|]) in let evars, subrel = new_cstr_evar res.rew_evars env app in let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in { res with rew_prf = RewPrf (rel', appsub); rew_evars = evars } let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' cstr evars = let evars, morph_instance, proj, sigargs, m', args, args' = let first = try (array_find args' (fun i b -> b <> None)) with Not_found -> raise (Invalid_argument "resolve_morphism") in let morphargs, morphobjs = array_chop first args in let morphargs', morphobjs' = array_chop first args' in let appm = mkApp(m, morphargs) in let appmtype = Typing.type_of env (goalevars evars) appm in let cstrs = List.map (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf)) (Array.to_list morphobjs') in (* Desired signature *) let evars, appmtype', signature, sigargs = build_signature evars env appmtype cstrs cstr in (* Actual signature found *) let cl_args = [| appmtype' ; signature ; appm |] in let app = mkApp (Lazy.force proper_type, cl_args) in let env' = Environ.push_named (id_of_string "do_subrelation", Some (Lazy.force do_subrelation), Lazy.force apply_subrelation) env in let evars, morph = new_cstr_evar evars env' app in evars, morph, morph, sigargs, appm, morphobjs, morphobjs' in let projargs, subst, evars, respars, typeargs = array_fold_left2 (fun (acc, subst, evars, sigargs, typeargs') x y -> let (carrier, relation), sigargs = split_head sigargs in match relation with | Some relation -> let carrier = substl subst carrier and relation = substl subst relation in (match y with | None -> let evars, proof = proper_proof env evars carrier relation x in [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs' | Some r -> [ snd (get_rew_prf r); r.rew_to; x ] @ acc, subst, evars, sigargs, r.rew_to :: typeargs') | None -> if y <> None then error "Cannot rewrite the argument of a dependent function"; x :: acc, x :: subst, evars, sigargs, x :: typeargs') ([], [], evars, sigargs, []) args args' in let proof = applistc proj (List.rev projargs) in let newt = applistc m' (List.rev typeargs) in match respars with [ a, Some r ] -> evars, proof, a, r, oldt, fnewt newt | _ -> assert(false) let apply_constraint env avoid car rel prf cstr res = match cstr with | None -> res | Some r -> resolve_subrelation env avoid car rel prf r res let eq_env x y = x == y let apply_rule hypinfo loccs : strategy = let (nowhere_except_in,occs) = loccs in let is_occ occ = if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in let occ = ref 0 in fun env avoid t ty cstr evars -> if not (eq_env !hypinfo.cl.env env) then hypinfo := refresh_hypinfo env (goalevars evars) !hypinfo; let unif = unify_eqn env (goalevars evars) hypinfo t in if unif <> None then incr occ; match unif with | Some (evd', (prf, (car, rel, c1, c2))) when is_occ !occ -> begin if eq_constr t c2 then Some None else let res = { rew_car = ty; rew_from = c1; rew_to = c2; rew_prf = RewPrf (rel, prf); rew_evars = evd', cstrevars evars } in Some (Some (apply_constraint env avoid car rel prf cstr res)) end | _ -> None let apply_lemma flags (evm,c) left2right loccs : strategy = fun env avoid t ty cstr evars -> let hypinfo = ref (decompose_applied_relation env (goalevars evars) flags None c left2right) in apply_rule hypinfo loccs env avoid t ty cstr evars let make_leibniz_proof c ty r = let prf = match r.rew_prf with | RewPrf (rel, prf) -> let rel = mkApp (Lazy.force coq_eq, [| ty |]) in let prf = mkApp (Lazy.force coq_f_equal, [| r.rew_car; ty; mkLambda (Anonymous, r.rew_car, c); r.rew_from; r.rew_to; prf |]) in RewPrf (rel, prf) | RewCast k -> r.rew_prf in { r with rew_car = ty; rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf } open Elimschemes let reset_env env = let env' = Global.env_of_context (Environ.named_context_val env) in Environ.push_rel_context (Environ.rel_context env) env' let fold_match ?(force=false) env sigma c = let (ci, p, c, brs) = destCase c in let cty = Retyping.get_type_of env sigma c in let dep, pred, exists, sk = let env', ctx, body = let ctx, pred = decompose_lam_assum p in let env' = Environ.push_rel_context ctx env in env', ctx, pred in let sortp = Retyping.get_sort_family_of env' sigma body in let sortc = Retyping.get_sort_family_of env sigma cty in let dep = not (noccurn 1 body) in let pred = if dep then p else it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx) in let sk = if sortp = InProp then if sortc = InProp then if dep then case_dep_scheme_kind_from_prop else case_scheme_kind_from_prop else ( if dep then case_dep_scheme_kind_from_type_in_prop else case_scheme_kind_from_type) else ((* sortc <> InProp by typing *) if dep then case_dep_scheme_kind_from_type else case_scheme_kind_from_type) in let exists = Ind_tables.check_scheme sk ci.ci_ind in if exists || force then dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind else raise Not_found in let app = let ind, args = Inductive.find_rectype env cty in let pars, args = list_chop ci.ci_npar args in let meths = List.map (fun br -> br) (Array.to_list brs) in applist (mkConst sk, pars @ [pred] @ meths @ args @ [c]) in sk, (if exists then env else reset_env env), app let unfold_match env sigma sk app = match kind_of_term app with | App (f', args) when f' = mkConst sk -> let v = Environ.constant_value (Global.env ()) sk in Reductionops.whd_beta sigma (mkApp (v, args)) | _ -> app let is_rew_cast = function RewCast _ -> true | _ -> false let coerce env avoid cstr res = let rel, prf = get_rew_prf res in apply_constraint env avoid res.rew_car rel prf cstr res let subterm all flags (s : strategy) : strategy = let rec aux env avoid t ty cstr evars = let cstr' = Option.map (fun c -> (ty, Some c)) cstr in match kind_of_term t with | App (m, args) -> let rewrite_args success = let args', evars', progress = Array.fold_left (fun (acc, evars, progress) arg -> if progress <> None && not all then (None :: acc, evars, progress) else let res = s env avoid arg (Typing.type_of env (goalevars evars) arg) None evars in match res with | Some None -> (None :: acc, evars, if progress = None then Some false else progress) | Some (Some r) -> (Some r :: acc, r.rew_evars, Some true) | None -> (None :: acc, evars, progress)) ([], evars, success) args in match progress with | None -> None | Some false -> Some None | Some true -> let args' = Array.of_list (List.rev args') in if array_exists (function | None -> false | Some r -> not (is_rew_cast r.rew_prf)) args' then let evars', prf, car, rel, c1, c2 = resolve_morphism env avoid t m args args' cstr' evars' in let res = { rew_car = ty; rew_from = c1; rew_to = c2; rew_prf = RewPrf (rel, prf); rew_evars = evars' } in Some (Some res) else let args' = array_map2 (fun aorig anew -> match anew with None -> aorig | Some r -> r.rew_to) args args' in let res = { rew_car = ty; rew_from = t; rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast; rew_evars = evars' } in Some (Some res) in if flags.on_morphisms then let evarsref = ref (snd evars) in let mty = Typing.type_of env (goalevars evars) m in let cstr', m, mty, argsl, args = let argsl = Array.to_list args in match lift_cstr env (goalevars evars) evarsref argsl m mty None with | Some (cstr', m, mty, args) -> Some cstr', m, mty, args, Array.of_list args | None -> None, m, mty, argsl, args in let m' = s env avoid m mty cstr' (fst evars, !evarsref) in match m' with | None -> rewrite_args None (* Standard path, try rewrite on arguments *) | Some None -> rewrite_args (Some false) | Some (Some r) -> (* We rewrote the function and get a proof of pointwise rel for the arguments. We just apply it. *) let prf = match r.rew_prf with | RewPrf (rel, prf) -> RewPrf (apply_pointwise rel argsl, mkApp (prf, args)) | x -> x in let res = { rew_car = prod_appvect r.rew_car args; rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args); rew_prf = prf; rew_evars = r.rew_evars } in match prf with | RewPrf (rel, prf) -> Some (Some (apply_constraint env avoid res.rew_car rel prf cstr res)) | _ -> Some (Some res) else rewrite_args None | Prod (n, x, b) when noccurn 1 b -> let b = subst1 mkProp b in let tx = Typing.type_of env (goalevars evars) x and tb = Typing.type_of env (goalevars evars) b in let res = aux env avoid (mkApp (arrow_morphism tx tb, [| x; b |])) ty cstr evars in (match res with | Some (Some r) -> Some (Some { r with rew_to = unfold_impl r.rew_to }) | _ -> res) (* if x' = None && flags.under_lambdas then *) (* let lam = mkLambda (n, x, b) in *) (* let lam', occ = aux env lam occ None in *) (* let res = *) (* match lam' with *) (* | None -> None *) (* | Some (prf, (car, rel, c1, c2)) -> *) (* Some (resolve_morphism env sigma t *) (* ~fnewt:unfold_all *) (* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *) (* cstr evars) *) (* in res, occ *) (* else *) | Prod (n, dom, codom) -> let lam = mkLambda (n, dom, codom) in let app, unfold = if eq_constr ty mkProp then mkApp (Lazy.force coq_all, [| dom; lam |]), unfold_all else mkApp (Lazy.force coq_forall, [| dom; lam |]), unfold_forall in let res = aux env avoid app ty cstr evars in (match res with | Some (Some r) -> Some (Some { r with rew_to = unfold r.rew_to }) | _ -> res) | Lambda (n, t, b) when flags.under_lambdas -> let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in let env' = Environ.push_rel (n', None, t) env in let b' = s env' avoid b (Typing.type_of env' (goalevars evars) b) (unlift_cstr env (goalevars evars) cstr) evars in (match b' with | Some (Some r) -> let prf = match r.rew_prf with | RewPrf (rel, prf) -> let rel = pointwise_or_dep_relation n' t r.rew_car rel in let prf = mkLambda (n', t, prf) in RewPrf (rel, prf) | x -> x in Some (Some { r with rew_prf = prf; rew_car = mkProd (n, t, r.rew_car); rew_from = mkLambda(n, t, r.rew_from); rew_to = mkLambda (n, t, r.rew_to) }) | _ -> b') | Case (ci, p, c, brs) -> let cty = Typing.type_of env (goalevars evars) c in let cstr' = Some (mkApp (Lazy.force coq_eq, [| cty |])) in let c' = s env avoid c cty cstr' evars in let res = match c' with | Some (Some r) -> let res = make_leibniz_proof (mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs)) ty r in Some (Some (coerce env avoid cstr res)) | x -> if array_for_all ((=) 0) ci.ci_cstr_ndecls then let cstr = Some (mkApp (Lazy.force coq_eq, [| ty |])) in let found, brs' = Array.fold_left (fun (found, acc) br -> if found <> None then (found, fun x -> lift 1 br :: acc x) else match s env avoid br ty cstr evars with | Some (Some r) -> (Some r, fun x -> mkRel 1 :: acc x) | _ -> (None, fun x -> lift 1 br :: acc x)) (None, fun x -> []) brs in match found with | Some r -> let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' x))) in Some (Some (make_leibniz_proof ctxc ty r)) | None -> x else match try Some (fold_match env (goalevars evars) t) with Not_found -> None with | None -> x | Some (cst, _, t') -> match aux env avoid t' ty cstr evars with | Some (Some prf) -> Some (Some { prf with rew_from = t; rew_to = unfold_match env (goalevars evars) cst prf.rew_to }) | x' -> x in (match res with | Some (Some r) -> let rel, prf = get_rew_prf r in Some (Some (apply_constraint env avoid r.rew_car rel prf cstr r)) | x -> x) | _ -> None in aux let all_subterms = subterm true default_flags let one_subterm = subterm false default_flags (** Requires transitivity of the rewrite step, if not a reduction. Not tail-recursive. *) let transitivity env avoid (res : rewrite_result_info) (next : strategy) : rewrite_result option = match next env avoid res.rew_to res.rew_car (get_opt_rew_rel res.rew_prf) res.rew_evars with | None -> None | Some None -> Some (Some res) | Some (Some res') -> match res.rew_prf with | RewCast c -> Some (Some { res' with rew_from = res.rew_from }) | RewPrf (rew_rel, rew_prf) -> match res'.rew_prf with | RewCast _ -> Some (Some ({ res with rew_to = res'.rew_to })) | RewPrf (res'_rel, res'_prf) -> let prfty = mkApp (Lazy.force transitive_type, [| res.rew_car; rew_rel |]) in let evars, prf = new_cstr_evar res'.rew_evars env prfty in let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to; rew_prf; res'_prf |]) in Some (Some { res' with rew_from = res.rew_from; rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }) (** Rewriting strategies. Inspired by ELAN's rewriting strategies: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049 *) module Strategies = struct let fail : strategy = fun env avoid t ty cstr evars -> None let id : strategy = fun env avoid t ty cstr evars -> Some None let refl : strategy = fun env avoid t ty cstr evars -> let evars, rel = match cstr with | None -> new_cstr_evar evars env (mk_relation ty) | Some r -> evars, r in let evars, proof = let mty = mkApp (Lazy.force proper_proxy_type, [| ty ; rel; t |]) in new_cstr_evar evars env mty in Some (Some { rew_car = ty; rew_from = t; rew_to = t; rew_prf = RewPrf (rel, proof); rew_evars = evars }) let progress (s : strategy) : strategy = fun env avoid t ty cstr evars -> match s env avoid t ty cstr evars with | None -> None | Some None -> None | r -> r let seq fst snd : strategy = fun env avoid t ty cstr evars -> match fst env avoid t ty cstr evars with | None -> None | Some None -> snd env avoid t ty cstr evars | Some (Some res) -> transitivity env avoid res snd let choice fst snd : strategy = fun env avoid t ty cstr evars -> match fst env avoid t ty cstr evars with | None -> snd env avoid t ty cstr evars | res -> res let try_ str : strategy = choice str id let fix (f : strategy -> strategy) : strategy = let rec aux env = f (fun env -> aux env) env in aux let any (s : strategy) : strategy = fix (fun any -> try_ (seq s any)) let repeat (s : strategy) : strategy = seq s (any s) let bu (s : strategy) : strategy = fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s')) let td (s : strategy) : strategy = fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s')) let innermost (s : strategy) : strategy = fix (fun ins -> choice (one_subterm ins) s) let outermost (s : strategy) : strategy = fix (fun out -> choice s (one_subterm out)) let lemmas flags cs : strategy = List.fold_left (fun tac (l,l2r) -> choice tac (apply_lemma flags l l2r (false,[]))) fail cs let inj_open c = (Evd.empty,c) let old_hints (db : string) : strategy = let rules = Autorewrite.find_rewrites db in lemmas rewrite_unif_flags (List.map (fun hint -> (inj_open (hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r)) rules) let hints (db : string) : strategy = fun env avoid t ty cstr evars -> let rules = Autorewrite.find_matches db t in let lemma hint = (inj_open (hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r) in let lems = List.map lemma rules in lemmas rewrite_unif_flags lems env avoid t ty cstr evars let reduce (r : Redexpr.red_expr) : strategy = let rfn, ckind = Redexpr.reduction_of_red_expr r in fun env avoid t ty cstr evars -> let t' = rfn env (goalevars evars) t in if eq_constr t' t then Some None else Some (Some { rew_car = ty; rew_from = t; rew_to = t'; rew_prf = RewCast ckind; rew_evars = evars }) let fold c : strategy = fun env avoid t ty cstr evars -> (* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *) let sigma, c = Constrintern.interp_open_constr (goalevars evars) env c in let unfolded = try Tacred.try_red_product env sigma c with _ -> error "fold: the term is not unfoldable !" in try let sigma = Unification.w_unify env sigma CONV ~flags:Unification.elim_flags unfolded t in let c' = Evarutil.nf_evar sigma c in Some (Some { rew_car = ty; rew_from = t; rew_to = c'; rew_prf = RewCast DEFAULTcast; rew_evars = sigma, cstrevars evars }) with _ -> None end (** The strategy for a single rewrite, dealing with occurences. *) let rewrite_strat flags occs hyp = let app = apply_rule hyp occs in let rec aux () = Strategies.choice app (subterm true flags (fun env -> aux () env)) in aux () let get_hypinfo_ids {c = opt} = match opt with | None -> [] | Some (is, gc) -> List.map fst is.lfun @ is.avoid_ids let rewrite_with flags c left2right loccs : strategy = fun env avoid t ty cstr evars -> let gevars = goalevars evars in let hypinfo = ref (decompose_applied_relation_expr env gevars flags c left2right) in let avoid = get_hypinfo_ids !hypinfo @ avoid in rewrite_strat default_flags loccs hypinfo env avoid t ty cstr (gevars, cstrevars evars) let apply_strategy (s : strategy) env avoid concl cstr evars = let res = s env avoid concl (Typing.type_of env (goalevars evars) concl) (Option.map snd cstr) evars in match res with | None -> None | Some None -> Some None | Some (Some res) -> Some (Some (res.rew_prf, res.rew_evars, res.rew_car, res.rew_from, res.rew_to)) let merge_evars (goal,cstr) = Evd.merge goal cstr let solve_constraints env evars = Typeclasses.resolve_typeclasses env ~split:false ~fail:true (merge_evars evars) let nf_zeta = Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA]) let map_rewprf f = function | RewPrf (rel, prf) -> RewPrf (f rel, f prf) | RewCast c -> RewCast c exception RewriteFailure type result = (evar_map * constr option * types) option option let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result = let cstr = let sort = mkProp in let impl = Lazy.force impl in match is_hyp with | None -> (sort, inverse sort impl) | Some _ -> (sort, impl) in let evars = (sigma, Evd.empty) in let eq = apply_strategy strat env avoid concl (Some cstr) evars in match eq with | Some (Some (p, evars, car, oldt, newt)) -> let evars' = solve_constraints env evars in let p = map_rewprf (fun p -> nf_zeta env evars' (Evarutil.nf_evar evars' p)) p in let newt = Evarutil.nf_evar evars' newt in let abs = Option.map (fun (x, y) -> Evarutil.nf_evar evars' x, Evarutil.nf_evar evars' y) abs in let evars = (* Keep only original evars (potentially instantiated) and goal evars, the rest has been defined and substituted already. *) (* let cstrs = cstrevars evars in *) (* cstrs is small *) let gevars = goalevars evars in Evd.fold (fun ev evi acc -> if Evd.mem gevars ev then Evd.add acc ev evi else acc) evars' Evd.empty (* Evd.fold (fun ev evi acc -> Evd.remove acc ev) cstrs evars' *) in let res = match is_hyp with | Some id -> (match p with | RewPrf (rel, p) -> let term = match abs with | None -> p | Some (t, ty) -> mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |]) in Some (evars, Some (mkApp (term, [| mkVar id |])), newt) | RewCast c -> Some (evars, None, newt)) | None -> (match p with | RewPrf (rel, p) -> (match abs with | None -> Some (evars, Some p, newt) | Some (t, ty) -> let proof = mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |]) in Some (evars, Some proof, newt)) | RewCast c -> Some (evars, None, newt)) in Some res | Some None -> Some None | None -> None let rewrite_refine (evd,c) = Tacmach.refine c let cl_rewrite_clause_tac ?abs strat meta clause gl = let evartac evd = Refiner.tclEVARS evd in let treat res = match res with | None -> raise RewriteFailure | Some None -> tclFAIL 0 (str"setoid rewrite failed: no progress made") | Some (Some (undef, p, newt)) -> let tac = match clause, p with | Some id, Some p -> cut_replacing id newt (Tacmach.refine p) | Some id, None -> change_in_hyp None newt (id, InHypTypeOnly) | None, Some p -> let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in tclTHENLAST (Tacmach.internal_cut_no_check false name newt) (tclTHEN (Tactics.revert [name]) (Tacmach.refine p)) | None, None -> change_in_concl None newt in tclTHEN (evartac undef) tac in let tac = try let concl, is_hyp = match clause with | Some id -> pf_get_hyp_typ gl id, Some id | None -> pf_concl gl, None in let sigma = project gl in let concl = Evarutil.nf_evar sigma concl in let res = cl_rewrite_clause_aux ?abs strat (pf_env gl) [] sigma concl is_hyp in treat res with | Loc.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e))) | TypeClassError (env, (UnsatisfiableConstraints _ as e)) -> Refiner.tclFAIL_lazy 0 (lazy (str"setoid rewrite failed: unable to satisfy the rewriting constraints." ++ fnl () ++ Himsg.explain_typeclass_error env e)) in tac gl open Goal open Environ let bind_gl_info f = bind concl (fun c -> bind env (fun v -> bind defs (fun ev -> f c v ev))) let fail l s = raise (Refiner.FailError (l, lazy s)) let new_refine c : Goal.subgoals Goal.sensitive = let refable = Goal.Refinable.make (fun handle -> Goal.Refinable.constr_of_open_constr handle true c) in Goal.bind refable Goal.refine let assert_replacing id newt tac = let sens = bind_gl_info (fun concl env sigma -> let nc' = Environ.fold_named_context (fun _ (n, b, t as decl) nc' -> if n = id then (n, b, newt) :: nc' else decl :: nc') env ~init:[] in let reft = Refinable.make (fun h -> Goal.bind (Refinable.mkEvar h (Environ.reset_with_named_context (val_of_named_context nc') env) concl) (fun ev -> Goal.bind (Refinable.mkEvar h env newt) (fun ev' -> let inst = fold_named_context (fun _ (n, b, t) inst -> if n = id then ev' :: inst else if b = None then mkVar n :: inst else inst) env ~init:[] in let (e, args) = destEvar ev in Goal.return (mkEvar (e, Array.of_list inst))))) in Goal.bind reft Goal.refine) in Proofview.tclTHEN (Proofview.tclSENSITIVE sens) (Proofview.tclFOCUS 2 2 tac) let cl_rewrite_clause_newtac ?abs strat clause = let treat (res, is_hyp) = match res with | None -> raise RewriteFailure | Some None -> fail 0 (str"setoid rewrite failed: no progress made") | Some (Some res) -> match is_hyp, res with | Some id, (undef, Some p, newt) -> assert_replacing id newt (Proofview.tclSENSITIVE (new_refine (undef, p))) | Some id, (undef, None, newt) -> Proofview.tclSENSITIVE (Goal.convert_hyp false (id, None, newt)) | None, (undef, Some p, newt) -> let refable = Goal.Refinable.make (fun handle -> Goal.bind env (fun env -> Goal.bind (Refinable.mkEvar handle env newt) (fun ev -> Goal.Refinable.constr_of_open_constr handle true (undef, mkApp (p, [| ev |]))))) in Proofview.tclSENSITIVE (Goal.bind refable Goal.refine) | None, (undef, None, newt) -> Proofview.tclSENSITIVE (Goal.convert_concl false newt) in let info = bind_gl_info (fun concl env sigma -> let ty, is_hyp = match clause with | Some id -> Environ.named_type id env, Some id | None -> concl, None in let res = try cl_rewrite_clause_aux ?abs strat env [] sigma ty is_hyp with | Loc.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e))) | TypeClassError (env, (UnsatisfiableConstraints _ as e)) -> fail 0 (str"setoid rewrite failed: unable to satisfy the rewriting constraints." ++ fnl () ++ Himsg.explain_typeclass_error env e) in return (res, is_hyp)) in Proofview.tclGOALBINDU info (fun i -> treat i) let cl_rewrite_clause_new_strat ?abs strat clause = init_setoid (); try cl_rewrite_clause_newtac ?abs strat clause with RewriteFailure -> fail 0 (str"setoid rewrite failed: strategy failed") let cl_rewrite_clause_newtac' l left2right occs clause = Proof_global.run_tactic (Proofview.tclFOCUS 1 1 (cl_rewrite_clause_new_strat (rewrite_with rewrite_unif_flags l left2right occs) clause)) let cl_rewrite_clause_strat strat clause gl = init_setoid (); let meta = Evarutil.new_meta() in (* let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in *) try cl_rewrite_clause_tac strat (mkMeta meta) clause gl with RewriteFailure -> tclFAIL 0 (str"setoid rewrite failed: strategy failed") gl let cl_rewrite_clause l left2right occs clause gl = cl_rewrite_clause_strat (rewrite_with (general_rewrite_unif_flags ()) l left2right occs) clause gl open Pp open Pcoq open Names open Tacexpr open Tacinterp open Termops open Genarg open Extraargs let occurrences_of = function | n::_ as nl when n < 0 -> (false,List.map abs nl) | nl -> if List.exists (fun n -> n < 0) nl then error "Illegal negative occurrence number."; (true,nl) let apply_constr_expr c l2r occs = fun env avoid t ty cstr evars -> let evd, c = Constrintern.interp_open_constr (goalevars evars) env c in apply_lemma (general_rewrite_unif_flags ()) (evd, (c, NoBindings)) l2r occs env avoid t ty cstr (evd, cstrevars evars) let interp_constr_list env sigma = List.map (fun c -> let evd, c = Constrintern.interp_open_constr sigma env c in (evd, (c, NoBindings)), true) open Pcoq type constr_expr_with_bindings = constr_expr with_bindings type glob_constr_with_bindings = glob_constr_and_expr with_bindings type glob_constr_with_bindings_sign = interp_sign * glob_constr_and_expr with_bindings let pr_glob_constr_with_bindings_sign _ _ _ (ge : glob_constr_with_bindings_sign) = Printer.pr_glob_constr (fst (fst (snd ge))) let pr_glob_constr_with_bindings _ _ _ (ge : glob_constr_with_bindings) = Printer.pr_glob_constr (fst (fst ge)) let pr_constr_expr_with_bindings prc _ _ (ge : constr_expr_with_bindings) = prc (fst ge) let interp_glob_constr_with_bindings ist gl c = Tacmach.project gl , (ist, c) let glob_glob_constr_with_bindings ist l = Tacinterp.intern_constr_with_bindings ist l let subst_glob_constr_with_bindings s c = subst_glob_with_bindings s c ARGUMENT EXTEND glob_constr_with_bindings PRINTED BY pr_glob_constr_with_bindings_sign INTERPRETED BY interp_glob_constr_with_bindings GLOBALIZED BY glob_glob_constr_with_bindings SUBSTITUTED BY subst_glob_constr_with_bindings RAW_TYPED AS constr_expr_with_bindings RAW_PRINTED BY pr_constr_expr_with_bindings GLOB_TYPED AS glob_constr_with_bindings GLOB_PRINTED BY pr_glob_constr_with_bindings [ constr_with_bindings(bl) ] -> [ bl ] END let _ = (Genarg.create_arg None "strategy" : ((strategy, Genarg.tlevel) Genarg.abstract_argument_type * (strategy, Genarg.glevel) Genarg.abstract_argument_type * (strategy, Genarg.rlevel) Genarg.abstract_argument_type)) let pr_strategy _ _ _ (s : strategy) = Pp.str "" let interp_strategy ist gl c = project gl , c let glob_strategy ist l = l let subst_strategy evm l = l ARGUMENT EXTEND rewstrategy TYPED AS strategy PRINTED BY pr_strategy INTERPRETED BY interp_strategy GLOBALIZED BY glob_strategy SUBSTITUTED BY subst_strategy [ constr(c) ] -> [ apply_constr_expr c true all_occurrences ] | [ "<-" constr(c) ] -> [ apply_constr_expr c false all_occurrences ] | [ "subterms" rewstrategy(h) ] -> [ all_subterms h ] | [ "subterm" rewstrategy(h) ] -> [ one_subterm h ] | [ "innermost" rewstrategy(h) ] -> [ Strategies.innermost h ] | [ "outermost" rewstrategy(h) ] -> [ Strategies.outermost h ] | [ "bottomup" rewstrategy(h) ] -> [ Strategies.bu h ] | [ "topdown" rewstrategy(h) ] -> [ Strategies.td h ] | [ "id" ] -> [ Strategies.id ] | [ "refl" ] -> [ Strategies.refl ] | [ "progress" rewstrategy(h) ] -> [ Strategies.progress h ] | [ "fail" ] -> [ Strategies.fail ] | [ "try" rewstrategy(h) ] -> [ Strategies.try_ h ] | [ "any" rewstrategy(h) ] -> [ Strategies.any h ] | [ "repeat" rewstrategy(h) ] -> [ Strategies.repeat h ] | [ rewstrategy(h) ";" rewstrategy(h') ] -> [ Strategies.seq h h' ] | [ "(" rewstrategy(h) ")" ] -> [ h ] | [ "choice" rewstrategy(h) rewstrategy(h') ] -> [ Strategies.choice h h' ] | [ "old_hints" preident(h) ] -> [ Strategies.old_hints h ] | [ "hints" preident(h) ] -> [ Strategies.hints h ] | [ "terms" constr_list(h) ] -> [ fun env avoid t ty cstr evars -> Strategies.lemmas rewrite_unif_flags (interp_constr_list env (goalevars evars) h) env avoid t ty cstr evars ] | [ "eval" red_expr(r) ] -> [ fun env avoid t ty cstr evars -> let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in Strategies.reduce r_interp env avoid t ty cstr (sigma,cstrevars evars) ] | [ "fold" constr(c) ] -> [ Strategies.fold c ] END TACTIC EXTEND rewrite_strat | [ "rewrite_strat" rewstrategy(s) "in" hyp(id) ] -> [ cl_rewrite_clause_strat s (Some id) ] | [ "rewrite_strat" rewstrategy(s) ] -> [ cl_rewrite_clause_strat s None ] END let clsubstitute o c = let is_tac id = match fst (fst (snd c)) with GVar (_, id') when id' = id -> true | _ -> false in Tacticals.onAllHypsAndConcl (fun cl -> match cl with | Some id when is_tac id -> tclIDTAC | _ -> cl_rewrite_clause c o all_occurrences cl) open Extraargs TACTIC EXTEND substitute | [ "substitute" orient(o) glob_constr_with_bindings(c) ] -> [ clsubstitute o c ] END (* Compatibility with old Setoids *) TACTIC EXTEND setoid_rewrite [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) ] -> [ cl_rewrite_clause c o all_occurrences None ] | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "in" hyp(id) ] -> [ cl_rewrite_clause c o all_occurrences (Some id)] | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) ] -> [ cl_rewrite_clause c o (occurrences_of occ) None] | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) "in" hyp(id)] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some id)] | [ "setoid_rewrite" orient(o) glob_constr_with_bindings(c) "in" hyp(id) "at" occurrences(occ)] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some id)] END let cl_rewrite_clause_newtac_tac c o occ cl gl = cl_rewrite_clause_newtac' c o occ cl; tclIDTAC gl TACTIC EXTEND GenRew | [ "rew" orient(o) glob_constr_with_bindings(c) "in" hyp(id) "at" occurrences(occ) ] -> [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) (Some id) ] | [ "rew" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) "in" hyp(id) ] -> [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) (Some id) ] | [ "rew" orient(o) glob_constr_with_bindings(c) "in" hyp(id) ] -> [ cl_rewrite_clause_newtac_tac c o all_occurrences (Some id) ] | [ "rew" orient(o) glob_constr_with_bindings(c) "at" occurrences(occ) ] -> [ cl_rewrite_clause_newtac_tac c o (occurrences_of occ) None ] | [ "rew" orient(o) glob_constr_with_bindings(c) ] -> [ cl_rewrite_clause_newtac_tac c o all_occurrences None ] END let mkappc s l = CAppExpl (dummy_loc,(None,(Libnames.Ident (dummy_loc,id_of_string s))),l) let declare_an_instance n s args = ((dummy_loc,Name n), Explicit, CAppExpl (dummy_loc, (None, Qualid (dummy_loc, qualid_of_string s)), args)) let declare_instance a aeq n s = declare_an_instance n s [a;aeq] let anew_instance global binders instance fields = new_instance binders instance (Some (CRecord (dummy_loc,None,fields))) ~global:(not (Vernacexpr.use_section_locality ())) ~generalize:false None let declare_instance_refl global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive" in anew_instance global binders instance [(Ident (dummy_loc,id_of_string "reflexivity"),lemma)] let declare_instance_sym global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric" in anew_instance global binders instance [(Ident (dummy_loc,id_of_string "symmetry"),lemma)] let declare_instance_trans global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive" in anew_instance global binders instance [(Ident (dummy_loc,id_of_string "transitivity"),lemma)] let declare_relation ?(binders=[]) a aeq n refl symm trans = init_setoid (); let global = not (Vernacexpr.use_section_locality ()) in let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in ignore(anew_instance global binders instance []); match (refl,symm,trans) with (None, None, None) -> () | (Some lemma1, None, None) -> ignore (declare_instance_refl global binders a aeq n lemma1) | (None, Some lemma2, None) -> ignore (declare_instance_sym global binders a aeq n lemma2) | (None, None, Some lemma3) -> ignore (declare_instance_trans global binders a aeq n lemma3) | (Some lemma1, Some lemma2, None) -> ignore (declare_instance_refl global binders a aeq n lemma1); ignore (declare_instance_sym global binders a aeq n lemma2) | (Some lemma1, None, Some lemma3) -> let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in ignore( anew_instance global binders instance [(Ident (dummy_loc,id_of_string "PreOrder_Reflexive"), lemma1); (Ident (dummy_loc,id_of_string "PreOrder_Transitive"),lemma3)]) | (None, Some lemma2, Some lemma3) -> let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in ignore( anew_instance global binders instance [(Ident (dummy_loc,id_of_string "PER_Symmetric"), lemma2); (Ident (dummy_loc,id_of_string "PER_Transitive"),lemma3)]) | (Some lemma1, Some lemma2, Some lemma3) -> let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in ignore( anew_instance global binders instance [(Ident (dummy_loc,id_of_string "Equivalence_Reflexive"), lemma1); (Ident (dummy_loc,id_of_string "Equivalence_Symmetric"), lemma2); (Ident (dummy_loc,id_of_string "Equivalence_Transitive"), lemma3)]) type 'a binders_argtype = (local_binder list, 'a) Genarg.abstract_argument_type let _, _, rawwit_binders = (Genarg.create_arg None "binders" : Genarg.tlevel binders_argtype * Genarg.glevel binders_argtype * Genarg.rlevel binders_argtype) open Pcoq.Constr VERNAC COMMAND EXTEND AddRelation | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] -> [ declare_relation a aeq n (Some lemma1) (Some lemma2) None ] | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "as" ident(n) ] -> [ declare_relation a aeq n (Some lemma1) None None ] | [ "Add" "Relation" constr(a) constr(aeq) "as" ident(n) ] -> [ declare_relation a aeq n None None None ] END VERNAC COMMAND EXTEND AddRelation2 [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] -> [ declare_relation a aeq n None (Some lemma2) None ] | [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation a aeq n None (Some lemma2) (Some lemma3) ] END VERNAC COMMAND EXTEND AddRelation3 [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation a aeq n (Some lemma1) None (Some lemma3) ] | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ] | [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation a aeq n None None (Some lemma3) ] END VERNAC COMMAND EXTEND AddParametricRelation | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) None ] | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n (Some lemma1) None None ] | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n None None None ] END VERNAC COMMAND EXTEND AddParametricRelation2 [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n None (Some lemma2) None ] | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n None (Some lemma2) (Some lemma3) ] END VERNAC COMMAND EXTEND AddParametricRelation3 [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n (Some lemma1) None (Some lemma3) ] | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ] | [ "Add" "Parametric" "Relation" binders(b) ":" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] -> [ declare_relation ~binders:b a aeq n None None (Some lemma3) ] END let cHole = CHole (dummy_loc, None) open Entries open Libnames let proper_projection r ty = let ctx, inst = decompose_prod_assum ty in let mor, args = destApp inst in let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in let app = mkApp (Lazy.force proper_proj, Array.append args [| instarg |]) in it_mkLambda_or_LetIn app ctx let declare_projection n instance_id r = let ty = Global.type_of_global r in let c = constr_of_global r in let term = proper_projection c ty in let typ = Typing.type_of (Global.env ()) Evd.empty term in let ctx, typ = decompose_prod_assum typ in let typ = let n = let rec aux t = match kind_of_term t with App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) -> succ (aux rel') | _ -> 0 in let init = match kind_of_term typ with App (f, args) when eq_constr f (Lazy.force respectful) -> mkApp (f, fst (array_chop (Array.length args - 2) args)) | _ -> typ in aux init in let ctx,ccl = Reductionops.splay_prod_n (Global.env()) Evd.empty (3 * n) typ in it_mkProd_or_LetIn ccl ctx in let typ = it_mkProd_or_LetIn typ ctx in let cst = { const_entry_body = term; const_entry_secctx = None; const_entry_type = Some typ; const_entry_opaque = false } in ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition)) let build_morphism_signature m = let env = Global.env () in let m = Constrintern.interp_constr Evd.empty env m in let t = Typing.type_of env Evd.empty m in let isevars = ref (Evd.empty, Evd.empty) in let cstrs = let rec aux t = match kind_of_term t with | Prod (na, a, b) -> None :: aux b | _ -> [] in aux t in let evars, t', sig_, cstrs = build_signature !isevars env t cstrs None in let _ = isevars := evars in let _ = List.iter (fun (ty, rel) -> Option.iter (fun rel -> let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in let evars,c = new_cstr_evar !isevars env default in isevars := evars) rel) cstrs in let morph = mkApp (Lazy.force proper_type, [| t; sig_; m |]) in let evd = solve_constraints env !isevars in let m = Evarutil.nf_evar evd morph in Evarutil.check_evars env Evd.empty evd m; m let default_morphism sign m = let env = Global.env () in let t = Typing.type_of env Evd.empty m in let evars, _, sign, cstrs = build_signature (Evd.empty,Evd.empty) env t (fst sign) (snd sign) in let morph = mkApp (Lazy.force proper_type, [| t; sign; m |]) in let evars, mor = resolve_one_typeclass env (merge_evars evars) morph in mor, proper_projection mor morph let add_setoid global binders a aeq t n = init_setoid (); let _lemma_refl = declare_instance_refl global binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in let _lemma_sym = declare_instance_sym global binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in let _lemma_trans = declare_instance_trans global binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in ignore( anew_instance global binders instance [(Ident (dummy_loc,id_of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]); (Ident (dummy_loc,id_of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]); (Ident (dummy_loc,id_of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])]) let add_morphism_infer glob m n = init_setoid (); let instance_id = add_suffix n "_Proper" in let instance = build_morphism_signature m in if Lib.is_modtype () then let cst = Declare.declare_constant ~internal:Declare.KernelSilent instance_id (Entries.ParameterEntry (None,instance,None), Decl_kinds.IsAssumption Decl_kinds.Logical) in add_instance (Typeclasses.new_instance (Lazy.force proper_class) None glob (ConstRef cst)); declare_projection n instance_id (ConstRef cst) else let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in Flags.silently (fun () -> Lemmas.start_proof instance_id kind instance (fun _ -> function Libnames.ConstRef cst -> add_instance (Typeclasses.new_instance (Lazy.force proper_class) None glob (ConstRef cst)); declare_projection n instance_id (ConstRef cst) | _ -> assert false); Pfedit.by (Tacinterp.interp <:tactic< Coq.Classes.SetoidTactics.add_morphism_tactic>>)) (); Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) () let add_morphism glob binders m s n = init_setoid (); let instance_id = add_suffix n "_Proper" in let instance = ((dummy_loc,Name instance_id), Explicit, CAppExpl (dummy_loc, (None, Qualid (dummy_loc, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper")), [cHole; s; m])) in let tac = Tacinterp.interp <:tactic> in ignore(new_instance ~global:glob binders instance (Some (CRecord (dummy_loc,None,[]))) ~generalize:false ~tac ~hook:(declare_projection n instance_id) None) VERNAC COMMAND EXTEND AddSetoid1 [ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] -> [ add_setoid (not (Vernacexpr.use_section_locality ())) [] a aeq t n ] | [ "Add" "Parametric" "Setoid" binders(binders) ":" constr(a) constr(aeq) constr(t) "as" ident(n) ] -> [ add_setoid (not (Vernacexpr.use_section_locality ())) binders a aeq t n ] | [ "Add" "Morphism" constr(m) ":" ident(n) ] -> [ add_morphism_infer (not (Vernacexpr.use_section_locality ())) m n ] | [ "Add" "Morphism" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] -> [ add_morphism (not (Vernacexpr.use_section_locality ())) [] m s n ] | [ "Add" "Parametric" "Morphism" binders(binders) ":" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] -> [ add_morphism (not (Vernacexpr.use_section_locality ())) binders m s n ] END (** Bind to "rewrite" too *) (** Taken from original setoid_replace, to emulate the old rewrite semantics where lemmas are first instantiated and then rewrite proceeds. *) let check_evar_map_of_evars_defs evd = let metas = Evd.meta_list evd in let check_freemetas_is_empty rebus = Evd.Metaset.iter (fun m -> if Evd.meta_defined evd m then () else raise (Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m]))) in List.iter (fun (_,binding) -> match binding with Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) -> check_freemetas_is_empty rebus freemetas | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_), {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) -> check_freemetas_is_empty rebus1 freemetas1 ; check_freemetas_is_empty rebus2 freemetas2 ) metas let unification_rewrite flags l2r c1 c2 cl car rel but gl = let env = pf_env gl in let (evd',c') = try (* ~flags:(false,true) to allow to mark occurrences that must not be rewritten simply by replacing them with let-defined definitions in the context *) Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env cl.evd ((if l2r then c1 else c2),but) with Pretype_errors.PretypeError _ -> (* ~flags:(true,true) to make Ring work (since it really exploits conversion) *) Unification.w_unify_to_subterm ~flags:flags env cl.evd ((if l2r then c1 else c2),but) in let evd' = Typeclasses.resolve_typeclasses ~fail:false env evd' in let cl' = {cl with evd = evd'} in let cl' = Clenvtac.clenv_pose_dependent_evars true cl' in let nf c = Evarutil.nf_evar cl'.evd (Clenv.clenv_nf_meta cl' c) in let c1 = if l2r then nf c' else nf c1 and c2 = if l2r then nf c2 else nf c' and car = nf car and rel = nf rel in check_evar_map_of_evars_defs cl'.evd; let prf = nf (Clenv.clenv_value cl') and prfty = nf (Clenv.clenv_type cl') in let cl' = { cl' with templval = mk_freelisted prf ; templtyp = mk_freelisted prfty } in {cl=cl'; prf=(mkRel 1); car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=Some (prf, prfty); flags = flags} let get_hyp gl evars (c,l) clause l2r = let flags = rewrite2_unif_flags in let hi = decompose_applied_relation (pf_env gl) evars flags None (c,l) l2r in let but = match clause with | Some id -> pf_get_hyp_typ gl id | None -> Evarutil.nf_evar evars (pf_concl gl) in { unification_rewrite flags hi.l2r hi.c1 hi.c2 hi.cl hi.car hi.rel but gl with flags = rewrite_unif_flags } let general_rewrite_flags = { under_lambdas = false; on_morphisms = true } let apply_lemma gl (c,l) cl l2r occs = let sigma = project gl in let hypinfo = ref (get_hyp gl sigma (c,l) cl l2r) in let app = apply_rule hypinfo occs in let rec aux () = Strategies.choice app (subterm true general_rewrite_flags (fun env -> aux () env)) in !hypinfo, aux () let general_s_rewrite cl l2r occs (c,l) ~new_goals gl = let meta = Evarutil.new_meta() in let hypinfo, strat = apply_lemma gl (c,l) cl l2r occs in try tclWEAK_PROGRESS (tclTHEN (Refiner.tclEVARS hypinfo.cl.evd) (cl_rewrite_clause_tac ~abs:hypinfo.abs strat (mkMeta meta) cl)) gl with RewriteFailure -> let {l2r=l2r; c1=x; c2=y} = hypinfo in raise (Pretype_errors.PretypeError (pf_env gl,project gl, Pretype_errors.NoOccurrenceFound ((if l2r then x else y), cl))) let general_s_rewrite_clause x = init_setoid (); match x with | None -> general_s_rewrite None | Some id -> general_s_rewrite (Some id) let _ = Equality.register_general_rewrite_clause general_s_rewrite_clause (** [setoid_]{reflexivity,symmetry,transitivity} tactics *) let not_declared env ty rel = tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared " ++ str ty ++ str" relation. Maybe you need to require the Setoid library") let setoid_proof gl ty fn fallback = let env = pf_env gl in try let rel, args = decompose_app_rel env (project gl) (pf_concl gl) in let evm = project gl in let car = pi3 (List.hd (fst (Reduction.dest_prod env (Typing.type_of env evm rel)))) in fn env evm car rel gl with e -> try fallback gl with Hipattern.NoEquationFound -> match e with | Not_found -> let rel, args = decompose_app_rel env (project gl) (pf_concl gl) in not_declared env ty rel gl | _ -> raise e let setoid_reflexivity gl = setoid_proof gl "reflexive" (fun env evm car rel -> apply (get_reflexive_proof env evm car rel)) (reflexivity_red true) let setoid_symmetry gl = setoid_proof gl "symmetric" (fun env evm car rel -> apply (get_symmetric_proof env evm car rel)) (symmetry_red true) let setoid_transitivity c gl = setoid_proof gl "transitive" (fun env evm car rel -> let proof = get_transitive_proof env evm car rel in match c with | None -> eapply proof | Some c -> apply_with_bindings (proof,Glob_term.ImplicitBindings [ c ])) (transitivity_red true c) let setoid_symmetry_in id gl = let ctype = pf_type_of gl (mkVar id) in let binders,concl = decompose_prod_assum ctype in let (equiv, args) = decompose_app concl in let rec split_last_two = function | [c1;c2] -> [],(c1, c2) | x::y::z -> let l,res = split_last_two (y::z) in x::l, res | _ -> error "The term provided is not an equivalence." in let others,(c1,c2) = split_last_two args in let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in let new_hyp' = mkApp (he, [| c2 ; c1 |]) in let new_hyp = it_mkProd_or_LetIn new_hyp' binders in tclTHENS (Tactics.cut new_hyp) [ intro_replacing id; tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ] ] gl let _ = Tactics.register_setoid_reflexivity setoid_reflexivity let _ = Tactics.register_setoid_symmetry setoid_symmetry let _ = Tactics.register_setoid_symmetry_in setoid_symmetry_in let _ = Tactics.register_setoid_transitivity setoid_transitivity TACTIC EXTEND setoid_symmetry [ "setoid_symmetry" ] -> [ setoid_symmetry ] | [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ] END TACTIC EXTEND setoid_reflexivity [ "setoid_reflexivity" ] -> [ setoid_reflexivity ] END TACTIC EXTEND setoid_transitivity [ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity (Some t) ] | [ "setoid_etransitivity" ] -> [ setoid_transitivity None ] END let implify id gl = let (_, b, ctype) = pf_get_hyp gl id in let binders,concl = decompose_prod_assum ctype in let ctype' = match binders with | (_, None, ty as hd) :: tl when noccurn 1 concl -> let env = Environ.push_rel_context tl (pf_env gl) in let sigma = project gl in let tyhd = Typing.type_of env sigma ty and tyconcl = Typing.type_of (Environ.push_rel hd env) sigma concl in let app = mkApp (arrow_morphism tyhd (subst1 mkProp tyconcl), [| ty; (subst1 mkProp concl) |]) in it_mkProd_or_LetIn app tl | _ -> ctype in convert_hyp_no_check (id, b, ctype') gl TACTIC EXTEND implify [ "implify" hyp(n) ] -> [ implify n ] END let rec fold_matches env sigma c = map_constr_with_full_binders Environ.push_rel (fun env c -> match kind_of_term c with | Case _ -> let cst, env, c' = fold_match ~force:true env sigma c in fold_matches env sigma c' | _ -> fold_matches env sigma c) env c TACTIC EXTEND fold_match [ "fold_match" constr(c) ] -> [ fun gl -> let _, _, c' = fold_match ~force:true (pf_env gl) (project gl) c in change (Some (snd (pattern_of_constr (project gl) c))) c' onConcl gl ] END TACTIC EXTEND fold_matches | [ "fold_matches" constr(c) ] -> [ fun gl -> let c' = fold_matches (pf_env gl) (project gl) c in change (Some (snd (pattern_of_constr (project gl) c))) c' onConcl gl ] END TACTIC EXTEND myapply | [ "myapply" global(id) constr_list(l) ] -> [ fun gl -> let gr = id in let _, impls = List.hd (Impargs.implicits_of_global gr) in let ty = Global.type_of_global gr in let env = pf_env gl in let evars = ref (project gl) in let app = let rec aux ty impls args args' = match impls, kind_of_term ty with | Some (_, _, (_, _)) :: impls, Prod (n, t, t') -> let arg = Evarutil.e_new_evar evars env t in aux (subst1 arg t') impls args (arg :: args') | None :: impls, Prod (n, t, t') -> (match args with | [] -> if dependent (mkRel 1) t' then let arg = Evarutil.e_new_evar evars env t in aux (subst1 arg t') impls args (arg :: args') else let arg = Evarutil.mk_new_meta () in evars := meta_declare (destMeta arg) t !evars; aux (subst1 arg t') impls args (arg :: args') | arg :: args -> aux (subst1 arg t') impls args (arg :: args')) | _, _ -> mkApp (constr_of_global gr, Array.of_list (List.rev args')) in aux ty impls l [] in tclTHEN (Refiner.tclEVARS !evars) (apply app) gl ] END