(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* [ e_assumption ] END TACTIC EXTEND eexact | [ "eexact" constr(c) ] -> [ e_give_exact c ] END let registered_e_assumption gl = tclFIRST (List.map (fun id gl -> e_give_exact (mkVar id) gl) (pf_ids_of_hyps gl)) gl (************************************************************************) (* PROLOG tactic *) (************************************************************************) let one_step l gl = [Tactics.intro] @ (List.map h_simplest_eapply (List.map mkVar (pf_ids_of_hyps gl))) @ (List.map h_simplest_eapply l) @ (List.map assumption (pf_ids_of_hyps gl)) let rec prolog l n gl = if n <= 0 then error "prolog - failure"; let prol = (prolog l (n-1)) in (tclFIRST (List.map (fun t -> (tclTHEN t prol)) (one_step l gl))) gl let prolog_tac l n gl = let n = match n with | ArgArg n -> n | _ -> error "Prolog called with a non closed argument." in try (prolog l n gl) with UserError ("Refiner.tclFIRST",_) -> errorlabstrm "Prolog.prolog" (str "Prolog failed.") TACTIC EXTEND prolog | [ "prolog" "[" constr_list(l) "]" int_or_var(n) ] -> [ prolog_tac l n ] END open Auto open Unification (***************************************************************************) (* A tactic similar to Auto, but using EApply, Assumption and e_give_exact *) (***************************************************************************) let priority l = List.map snd (List.filter (fun (pr,_) -> pr = 0) l) let unify_e_resolve flags (c,clenv) gls = let clenv' = connect_clenv gls clenv in let _ = clenv_unique_resolver false ~flags clenv' gls in h_simplest_eapply c gls let rec e_trivial_fail_db db_list local_db goal = let tacl = registered_e_assumption :: (tclTHEN Tactics.intro (function g'-> let d = pf_last_hyp g' in let hintl = make_resolve_hyp (pf_env g') (project g') d in (e_trivial_fail_db db_list (Hint_db.add_list hintl local_db) g'))) :: (List.map fst (e_trivial_resolve db_list local_db (pf_concl goal)) ) in tclFIRST (List.map tclCOMPLETE tacl) goal and e_my_find_search db_list local_db hdc concl = let hdc = head_of_constr_reference hdc in let hintl = if occur_existential concl then list_map_append (fun db -> let flags = {auto_unif_flags with modulo_delta = Hint_db.transparent_state db} in List.map (fun x -> flags, x) (Hint_db.map_all hdc db)) (local_db::db_list) else list_map_append (fun db -> let flags = {auto_unif_flags with modulo_delta = Hint_db.transparent_state db} in List.map (fun x -> flags, x) (Hint_db.map_auto (hdc,concl) db)) (local_db::db_list) in let tac_of_hint = fun (st, {pri=b; pat = p; code=t}) -> (b, let tac = match t with | Res_pf (term,cl) -> unify_resolve st (term,cl) | ERes_pf (term,cl) -> unify_e_resolve st (term,cl) | Give_exact (c) -> e_give_exact c | Res_pf_THEN_trivial_fail (term,cl) -> tclTHEN (unify_e_resolve st (term,cl)) (e_trivial_fail_db db_list local_db) | Unfold_nth c -> h_reduce (Unfold [all_occurrences_expr,c]) onConcl | Extern tacast -> conclPattern concl p tacast in (tac,lazy (pr_autotactic t))) (*i fun gls -> pPNL (pr_autotactic t); Format.print_flush (); try tac gls with e when Logic.catchable_exception(e) -> (Format.print_string "Fail\n"; Format.print_flush (); raise e) i*) in List.map tac_of_hint hintl and e_trivial_resolve db_list local_db gl = try priority (e_my_find_search db_list local_db (fst (head_constr_bound gl)) gl) with Bound | Not_found -> [] let e_possible_resolve db_list local_db gl = try List.map snd (e_my_find_search db_list local_db (fst (head_constr_bound gl)) gl) with Bound | Not_found -> [] let find_first_goal gls = try first_goal gls with UserError _ -> assert false (*s The following module [SearchProblem] is used to instantiate the generic exploration functor [Explore.Make]. *) type search_state = { depth : int; (*r depth of search before failing *) tacres : goal list sigma * validation; last_tactic : std_ppcmds Lazy.t; dblist : Auto.hint_db list; localdb : Auto.hint_db list } module SearchProblem = struct type state = search_state let success s = (sig_it (fst s.tacres)) = [] let pr_ev evs ev = Printer.pr_constr_env (Evd.evar_env ev) (Evarutil.nf_evar evs ev.Evd.evar_concl) let pr_goals gls = let evars = Evarutil.nf_evars (Refiner.project gls) in prlist (pr_ev evars) (sig_it gls) let filter_tactics (glls,v) l = (* let _ = Proof_trees.db_pr_goal (List.hd (sig_it glls)) in *) (* let evars = Evarutil.nf_evars (Refiner.project glls) in *) (* msg (str"Goal:" ++ pr_ev evars (List.hd (sig_it glls)) ++ str"\n"); *) let rec aux = function | [] -> [] | (tac,pptac) :: tacl -> try let (lgls,ptl) = apply_tac_list tac glls in let v' p = v (ptl p) in (* let gl = Proof_trees.db_pr_goal (List.hd (sig_it glls)) in *) (* msg (hov 1 (pptac ++ str" gives: \n" ++ pr_goals lgls ++ str"\n")); *) ((lgls,v'),pptac) :: aux tacl with e -> Refiner.catch_failerror e; aux tacl in aux l (* Ordering of states is lexicographic on depth (greatest first) then number of remaining goals. *) let compare s s' = let d = s'.depth - s.depth in let nbgoals s = List.length (sig_it (fst s.tacres)) in if d <> 0 then d else nbgoals s - nbgoals s' let branching s = if s.depth = 0 then [] else let lg = fst s.tacres in let nbgl = List.length (sig_it lg) in assert (nbgl > 0); let g = find_first_goal lg in let assumption_tacs = let l = filter_tactics s.tacres (List.map (fun id -> (e_give_exact (mkVar id), lazy (str "exact" ++ spc () ++ pr_id id))) (pf_ids_of_hyps g)) in List.map (fun (res,pp) -> { depth = s.depth; tacres = res; last_tactic = pp; dblist = s.dblist; localdb = List.tl s.localdb }) l in let intro_tac = List.map (fun ((lgls,_) as res,pp) -> let g' = first_goal lgls in let hintl = make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g') in let ldb = Hint_db.add_list hintl (List.hd s.localdb) in { depth = s.depth; tacres = res; last_tactic = pp; dblist = s.dblist; localdb = ldb :: List.tl s.localdb }) (filter_tactics s.tacres [Tactics.intro,lazy (str "intro")]) in let rec_tacs = let l = filter_tactics s.tacres (e_possible_resolve s.dblist (List.hd s.localdb) (pf_concl g)) in List.map (fun ((lgls,_) as res, pp) -> let nbgl' = List.length (sig_it lgls) in if nbgl' < nbgl then { depth = s.depth; tacres = res; last_tactic = pp; dblist = s.dblist; localdb = List.tl s.localdb } else { depth = pred s.depth; tacres = res; dblist = s.dblist; last_tactic = pp; localdb = list_addn (nbgl'-nbgl) (List.hd s.localdb) s.localdb }) l in List.sort compare (assumption_tacs @ intro_tac @ rec_tacs) let pp s = msg (hov 0 (str " depth=" ++ int s.depth ++ spc () ++ (Lazy.force s.last_tactic) ++ str "\n")) end module Search = Explore.Make(SearchProblem) let make_initial_state n gl dblist localdb = { depth = n; tacres = tclIDTAC gl; last_tactic = lazy (mt()); dblist = dblist; localdb = [localdb] } let e_depth_search debug p db_list local_db gl = try let tac = if debug then Search.debug_depth_first else Search.depth_first in let s = tac (make_initial_state p gl db_list local_db) in s.tacres with Not_found -> error "eauto: depth first search failed." let e_breadth_search debug n db_list local_db gl = try let tac = if debug then Search.debug_breadth_first else Search.breadth_first in let s = tac (make_initial_state n gl db_list local_db) in s.tacres with Not_found -> error "eauto: breadth first search failed." let e_search_auto debug (in_depth,p) lems db_list gl = let local_db = make_local_hint_db true lems gl in if in_depth then e_depth_search debug p db_list local_db gl else e_breadth_search debug p db_list local_db gl open Evd let eauto_with_bases debug np lems db_list = tclTRY (e_search_auto debug np lems db_list) let eauto debug np lems dbnames = let db_list = List.map (fun x -> try searchtable_map x with Not_found -> error ("No such Hint database: "^x^".")) ("core"::dbnames) in tclTRY (e_search_auto debug np lems db_list) let full_eauto debug n lems gl = let dbnames = current_db_names () in let dbnames = list_subtract dbnames ["v62"] in let db_list = List.map searchtable_map dbnames in tclTRY (e_search_auto debug n lems db_list) gl let gen_eauto d np lems = function | None -> full_eauto d np lems | Some l -> eauto d np lems l let make_depth = function | None -> !default_search_depth | Some (ArgArg d) -> d | _ -> error "eauto called with a non closed argument." let make_dimension n = function | None -> (true,make_depth n) | Some (ArgArg d) -> (false,d) | _ -> error "eauto called with a non closed argument." open Genarg (* Hint bases *) let pr_hintbases _prc _prlc _prt = Pptactic.pr_hintbases ARGUMENT EXTEND hintbases TYPED AS preident_list_opt PRINTED BY pr_hintbases | [ "with" "*" ] -> [ None ] | [ "with" ne_preident_list(l) ] -> [ Some l ] | [ ] -> [ Some [] ] END let pr_constr_coma_sequence prc _ _ = prlist_with_sep pr_comma prc ARGUMENT EXTEND constr_coma_sequence TYPED AS constr_list PRINTED BY pr_constr_coma_sequence | [ constr(c) "," constr_coma_sequence(l) ] -> [ c::l ] | [ constr(c) ] -> [ [c] ] END let pr_auto_using prc _prlc _prt = Pptactic.pr_auto_using prc ARGUMENT EXTEND auto_using TYPED AS constr_list PRINTED BY pr_auto_using | [ "using" constr_coma_sequence(l) ] -> [ l ] | [ ] -> [ [] ] END TACTIC EXTEND eauto | [ "eauto" int_or_var_opt(n) int_or_var_opt(p) auto_using(lems) hintbases(db) ] -> [ gen_eauto false (make_dimension n p) lems db ] END TACTIC EXTEND new_eauto | [ "new" "auto" int_or_var_opt(n) auto_using(lems) hintbases(db) ] -> [ match db with | None -> new_full_auto (make_depth n) lems | Some l -> new_auto (make_depth n) lems l ] END TACTIC EXTEND debug_eauto | [ "debug" "eauto" int_or_var_opt(n) int_or_var_opt(p) auto_using(lems) hintbases(db) ] -> [ gen_eauto true (make_dimension n p) lems db ] END TACTIC EXTEND dfs_eauto | [ "dfs" "eauto" int_or_var_opt(p) auto_using(lems) hintbases(db) ] -> [ gen_eauto false (true, make_depth p) lems db ] END let cons a l = a :: l let autounfolds db occs = let unfolds = List.concat (List.map (fun dbname -> let db = try searchtable_map dbname with Not_found -> errorlabstrm "autounfold" (str "Unknown database " ++ str dbname) in let (ids, csts) = Hint_db.unfolds db in Cset.fold (fun cst -> cons (all_occurrences, EvalConstRef cst)) csts (Idset.fold (fun id -> cons (all_occurrences, EvalVarRef id)) ids [])) db) in unfold_option unfolds let autounfold db cls gl = let cls = concrete_clause_of cls gl in let tac = autounfolds db in tclMAP (function | OnHyp (id,occs,where) -> tac occs (Some (id,where)) | OnConcl occs -> tac occs None) cls gl let autosimpl db cl = let unfold_of_elts constr (b, elts) = if not b then List.map (fun c -> all_occurrences, constr c) elts else [] in let unfolds = List.concat (List.map (fun dbname -> let db = searchtable_map dbname in let (ids, csts) = Hint_db.transparent_state db in unfold_of_elts (fun x -> EvalConstRef x) (Cpred.elements csts) @ unfold_of_elts (fun x -> EvalVarRef x) (Idpred.elements ids)) db) in unfold_option unfolds cl open Extraargs TACTIC EXTEND autounfold | [ "autounfold" hintbases(db) in_arg_hyp(id) ] -> [ autounfold (match db with None -> Auto.current_db_names () | Some [] -> ["core"] | Some x -> x) (glob_in_arg_hyp_to_clause id) ] END let unfold_head env (ids, csts) c = let rec aux c = match kind_of_term c with | Var id when Idset.mem id ids -> (match Environ.named_body id env with | Some b -> true, b | None -> false, c) | Const cst when Cset.mem cst csts -> true, Environ.constant_value env cst | App (f, args) -> (match aux f with | true, f' -> true, Reductionops.whd_betaiota Evd.empty (mkApp (f', args)) | false, _ -> let done_, args' = array_fold_left_i (fun i (done_, acc) arg -> if done_ then done_, arg :: acc else match aux arg with | true, arg' -> true, arg' :: acc | false, arg' -> false, arg :: acc) (false, []) args in if done_ then true, mkApp (f, Array.of_list (List.rev args')) else false, c) | _ -> let done_ = ref false in let c' = map_constr (fun c -> if !done_ then c else let x, c' = aux c in done_ := x; c') c in !done_, c' in aux c let autounfold_one db cl gl = let st = List.fold_left (fun (i,c) dbname -> let db = try searchtable_map dbname with Not_found -> errorlabstrm "autounfold" (str "Unknown database " ++ str dbname) in let (ids, csts) = Hint_db.unfolds db in (Idset.union ids i, Cset.union csts c)) (Idset.empty, Cset.empty) db in let did, c' = unfold_head (pf_env gl) st (match cl with Some (id, _) -> pf_get_hyp_typ gl id | None -> pf_concl gl) in if did then match cl with | Some hyp -> change_in_hyp None c' hyp gl | None -> convert_concl_no_check c' DEFAULTcast gl else tclFAIL 0 (str "Nothing to unfold") gl (* Cset.fold (fun cst -> cons (all_occurrences, EvalConstRef cst)) csts *) (* (Idset.fold (fun id -> cons (all_occurrences, EvalVarRef id)) ids [])) db) *) (* in unfold_option unfolds cl *) (* let db = try searchtable_map dbname *) (* with Not_found -> errorlabstrm "autounfold" (str "Unknown database " ++ str dbname) *) (* in *) (* let (ids, csts) = Hint_db.unfolds db in *) (* Cset.fold (fun cst -> tclORELSE (unfold_option [(occ, EvalVarRef id)] cst)) csts *) (* (Idset.fold (fun id -> tclORELSE (unfold_option [(occ, EvalVarRef id)] cl) ids acc))) *) (* (tclFAIL 0 (mt())) db *) TACTIC EXTEND autounfold_one | [ "autounfold_one" hintbases(db) "in" hyp(id) ] -> [ autounfold_one (match db with None -> ["core"] | Some x -> "core"::x) (Some (id, InHyp)) ] | [ "autounfold_one" hintbases(db) ] -> [ autounfold_one (match db with None -> ["core"] | Some x -> "core"::x) None ] END TACTIC EXTEND autounfoldify | [ "autounfoldify" constr(x) ] -> [ let db = match kind_of_term x with | Const c -> string_of_label (con_label c) | _ -> assert false in autounfold ["core";db] onConcl ] END TACTIC EXTEND unify | ["unify" constr(x) constr(y) ] -> [ unify x y ] | ["unify" constr(x) constr(y) "with" preident(base) ] -> [ unify ~state:(Hint_db.transparent_state (searchtable_map base)) x y ] END TACTIC EXTEND convert_concl_no_check | ["convert_concl_no_check" constr(x) ] -> [ convert_concl_no_check x DEFAULTcast ] END