(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (Name id,(* dummy *) mkProp)) ids in pr (Termops.push_rels_assum assums env) sigma c let pr_constr_under_binders_env = pr_constr_under_binders_env_gen pr_constr_env let pr_lconstr_under_binders_env = pr_constr_under_binders_env_gen pr_lconstr_env let pr_constr_under_binders c = let (sigma, env) = get_current_context () in pr_constr_under_binders_env env sigma c let pr_lconstr_under_binders c = let (sigma, env) = get_current_context () in pr_lconstr_under_binders_env env sigma c let pr_type_core goal_concl_style env sigma t = pr_constr_expr (extern_type goal_concl_style env sigma t) let pr_ltype_core goal_concl_style env sigma t = pr_lconstr_expr (extern_type goal_concl_style env sigma t) let pr_goal_concl_style_env env = pr_ltype_core true env let pr_ltype_env env = pr_ltype_core false env let pr_type_env env = pr_type_core false env let pr_ltype t = let (sigma, env) = get_current_context () in pr_ltype_env env sigma t let pr_type t = let (sigma, env) = get_current_context () in pr_type_env env sigma t let pr_ljudge_env env sigma j = (pr_lconstr_env env sigma j.uj_val, pr_lconstr_env env sigma j.uj_type) let pr_ljudge j = let (sigma, env) = get_current_context () in pr_ljudge_env env sigma j let pr_lglob_constr_env env c = pr_lconstr_expr (extern_glob_constr (Termops.vars_of_env env) c) let pr_glob_constr_env env c = pr_constr_expr (extern_glob_constr (Termops.vars_of_env env) c) let pr_lglob_constr c = let (sigma, env) = get_current_context () in pr_lglob_constr_env env c let pr_glob_constr c = let (sigma, env) = get_current_context () in pr_glob_constr_env env c let pr_closed_glob_env env sigma c = pr_constr_expr (extern_closed_glob false env sigma c) let pr_closed_glob c = let (sigma, env) = get_current_context () in pr_closed_glob_env env sigma c let pr_lconstr_pattern_env env sigma c = pr_lconstr_pattern_expr (extern_constr_pattern (Termops.names_of_rel_context env) sigma c) let pr_constr_pattern_env env sigma c = pr_constr_pattern_expr (extern_constr_pattern (Termops.names_of_rel_context env) sigma c) let pr_cases_pattern t = pr_cases_pattern_expr (extern_cases_pattern Names.Id.Set.empty t) let pr_lconstr_pattern t = let (sigma, env) = get_current_context () in pr_lconstr_pattern_env env sigma t let pr_constr_pattern t = let (sigma, env) = get_current_context () in pr_constr_pattern_env env sigma t let pr_sort sigma s = pr_glob_sort (extern_sort sigma s) let _ = Termops.set_print_constr (fun env t -> pr_lconstr_expr (extern_constr ~lax:true false env Evd.empty t)) let pr_in_comment pr x = str "(* " ++ pr x ++ str " *)" (** Term printers resilient to [Nametab] errors *) (** When the nametab isn't up-to-date, the term printers above could raise [Not_found] during [Nametab.shortest_qualid_of_global]. In this case, we build here a fully-qualified name based upon the kernel modpath and label of constants, and the idents in the [mutual_inductive_body] for the inductives and constructors (needs an environment for this). *) let id_of_global env = function | ConstRef kn -> Label.to_id (Constant.label kn) | IndRef (kn,0) -> Label.to_id (MutInd.label kn) | IndRef (kn,i) -> (Environ.lookup_mind kn env).mind_packets.(i).mind_typename | ConstructRef ((kn,i),j) -> (Environ.lookup_mind kn env).mind_packets.(i).mind_consnames.(j-1) | VarRef v -> v let rec dirpath_of_mp = function | MPfile sl -> sl | MPbound uid -> DirPath.make [MBId.to_id uid] | MPdot (mp,l) -> Libnames.add_dirpath_suffix (dirpath_of_mp mp) (Label.to_id l) let dirpath_of_global = function | ConstRef kn -> dirpath_of_mp (Constant.modpath kn) | IndRef (kn,_) | ConstructRef ((kn,_),_) -> dirpath_of_mp (MutInd.modpath kn) | VarRef _ -> DirPath.empty let qualid_of_global env r = Libnames.make_qualid (dirpath_of_global r) (id_of_global env r) let safe_gen f env sigma c = let orig_extern_ref = Constrextern.get_extern_reference () in let extern_ref loc vars r = try orig_extern_ref loc vars r with e when CErrors.noncritical e -> Libnames.Qualid (loc, qualid_of_global env r) in Constrextern.set_extern_reference extern_ref; try let p = f env sigma c in Constrextern.set_extern_reference orig_extern_ref; p with e when CErrors.noncritical e -> Constrextern.set_extern_reference orig_extern_ref; str "??" let safe_pr_lconstr_env = safe_gen pr_lconstr_env let safe_pr_constr_env = safe_gen pr_constr_env let safe_pr_lconstr t = let (sigma, env) = get_current_context () in safe_pr_lconstr_env env sigma t let safe_pr_constr t = let (sigma, env) = get_current_context () in safe_pr_constr_env env sigma t let pr_universe_ctx sigma c = if !Detyping.print_universes && not (Univ.UContext.is_empty c) then fnl()++pr_in_comment (fun c -> v 0 (Univ.pr_universe_context (Evd.pr_evd_level sigma) c)) c else mt() (**********************************************************************) (* Global references *) let pr_global_env = pr_global_env let pr_global = pr_global_env Id.Set.empty let pr_puniverses f env (c,u) = f env c ++ (if !Constrextern.print_universes then str"(*" ++ Univ.Instance.pr Universes.pr_with_global_universes u ++ str"*)" else mt ()) let pr_constant env cst = pr_global_env (Termops.vars_of_env env) (ConstRef cst) let pr_existential_key = Evd.pr_existential_key let pr_existential env sigma ev = pr_lconstr_env env sigma (mkEvar ev) let pr_inductive env ind = pr_lconstr_env env Evd.empty (mkInd ind) let pr_constructor env cstr = pr_lconstr_env env Evd.empty (mkConstruct cstr) let pr_pconstant = pr_puniverses pr_constant let pr_pinductive = pr_puniverses pr_inductive let pr_pconstructor = pr_puniverses pr_constructor let pr_evaluable_reference ref = pr_global (Tacred.global_of_evaluable_reference ref) (*let pr_glob_constr t = pr_lconstr (Constrextern.extern_glob_constr Id.Set.empty t)*) (*open Pattern let pr_pattern t = pr_pattern_env (Global.env()) empty_names_context t*) (**********************************************************************) (* Contexts and declarations *) let pr_var_decl_skel pr_id env sigma (id,c,typ) = let pbody = match c with | None -> (mt ()) | Some c -> (* Force evaluation *) let pb = pr_lconstr_env env sigma c in let pb = if isCast c then surround pb else pb in (str" := " ++ pb ++ cut () ) in let pt = pr_ltype_env env sigma typ in let ptyp = (str" : " ++ pt) in (pr_id id ++ hov 0 (pbody ++ ptyp)) let pr_var_decl env sigma d = pr_var_decl_skel pr_id env sigma (Context.Named.Declaration.to_tuple d) let pr_var_list_decl env sigma (l,c,typ) = hov 0 (pr_var_decl_skel (fun ids -> prlist_with_sep pr_comma pr_id ids) env sigma (l,c,typ)) let pr_rel_decl env sigma decl = let open Context.Rel.Declaration in let na = get_name decl in let typ = get_type decl in let pbody = match decl with | LocalAssum _ -> mt () | LocalDef (_,c,_) -> (* Force evaluation *) let pb = pr_lconstr_env env sigma c in let pb = if isCast c then surround pb else pb in (str":=" ++ spc () ++ pb ++ spc ()) in let ptyp = pr_ltype_env env sigma typ in match na with | Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) | Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) (* Prints out an "env" in a nice format. We print out the * signature,then a horizontal bar, then the debruijn environment. * It's printed out from outermost to innermost, so it's readable. *) (* Prints a signature, all declarations on the same line if possible *) let pr_named_context_of env sigma = let make_decl_list env d pps = pr_var_decl env sigma d :: pps in let psl = List.rev (fold_named_context make_decl_list env ~init:[]) in hv 0 (prlist_with_sep (fun _ -> ws 2) (fun x -> x) psl) let pr_named_context env sigma ne_context = hv 0 (Context.Named.fold_outside (fun d pps -> pps ++ ws 2 ++ pr_var_decl env sigma d) ne_context ~init:(mt ())) let pr_rel_context env sigma rel_context = pr_binders (extern_rel_context None env sigma rel_context) let pr_rel_context_of env sigma = pr_rel_context env sigma (rel_context env) (* Prints an env (variables and de Bruijn). Separator: newline *) let pr_context_unlimited env sigma = let sign_env = Context.NamedList.fold (fun d pps -> let pidt = pr_var_list_decl env sigma d in (pps ++ fnl () ++ pidt)) (Termops.compact_named_context (named_context env)) ~init:(mt ()) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env sigma d in (pps ++ fnl () ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) let pr_ne_context_of header env sigma = if List.is_empty (Environ.rel_context env) && List.is_empty (Environ.named_context env) then (mt ()) else let penv = pr_context_unlimited env sigma in (header ++ penv ++ fnl ()) let pr_context_limit n env sigma = let named_context = Environ.named_context env in let lgsign = List.length named_context in if n >= lgsign then pr_context_unlimited env sigma else let k = lgsign-n in let _,sign_env = Context.NamedList.fold (fun d (i,pps) -> if i < k then (i+1, (pps ++str ".")) else let pidt = pr_var_list_decl env sigma d in (i+1, (pps ++ fnl () ++ str (emacs_str "") ++ pidt))) (Termops.compact_named_context (Environ.named_context env)) ~init:(0,(mt ())) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env sigma d in (pps ++ fnl () ++ str (emacs_str "") ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) let pr_context_of env sigma = match Flags.print_hyps_limit () with | None -> hv 0 (pr_context_unlimited env sigma) | Some n -> hv 0 (pr_context_limit n env sigma) (* display goal parts (Proof mode) *) let pr_predicate pr_elt (b, elts) = let pr_elts = prlist_with_sep spc pr_elt elts in if b then str"all" ++ (if List.is_empty elts then mt () else str" except: " ++ pr_elts) else if List.is_empty elts then str"none" else pr_elts let pr_cpred p = pr_predicate (pr_constant (Global.env())) (Cpred.elements p) let pr_idpred p = pr_predicate Nameops.pr_id (Id.Pred.elements p) let pr_transparent_state (ids, csts) = hv 0 (str"VARIABLES: " ++ pr_idpred ids ++ fnl () ++ str"CONSTANTS: " ++ pr_cpred csts ++ fnl ()) (* display complete goal *) let default_pr_goal gs = let (g,sigma) = Goal.V82.nf_evar (project gs) (sig_it gs) in let env = Goal.V82.env sigma g in let concl = Goal.V82.concl sigma g in let goal = pr_context_of env sigma ++ cut () ++ str "============================" ++ cut () ++ pr_goal_concl_style_env env sigma concl in str " " ++ v 0 goal (* display a goal tag *) let pr_goal_tag g = let s = " (ID " ^ Goal.uid g ^ ")" in str (emacs_str s) let display_name = false (* display a goal name *) let pr_goal_name sigma g = if display_name then str " " ++ Pp.surround (pr_existential_key sigma g) else mt () (* display the conclusion of a goal *) let pr_concl n sigma g = let (g,sigma) = Goal.V82.nf_evar sigma g in let env = Goal.V82.env sigma g in let pc = pr_goal_concl_style_env env sigma (Goal.V82.concl sigma g) in str (emacs_str "") ++ str "subgoal " ++ int n ++ pr_goal_tag g ++ pr_goal_name sigma g ++ str " is:" ++ cut () ++ str" " ++ pc (* display evar type: a context and a type *) let pr_evgl_sign sigma evi = let env = evar_env evi in let ps = pr_named_context_of env sigma in let _, l = match Filter.repr (evar_filter evi) with | None -> [], [] | Some f -> List.filter2 (fun b c -> not b) f (evar_context evi) in let open Context.Named.Declaration in let ids = List.rev_map get_id l in let warn = if List.is_empty ids then mt () else (str "(" ++ prlist_with_sep pr_comma pr_id ids ++ str " cannot be used)") in let pc = pr_lconstr_env env sigma evi.evar_concl in let candidates = match evi.evar_body, evi.evar_candidates with | Evar_empty, Some l -> spc () ++ str "= {" ++ prlist_with_sep (fun () -> str "|") (pr_lconstr_env env sigma) l ++ str "}" | _ -> mt () in hov 0 (str"[" ++ ps ++ spc () ++ str"|- " ++ pc ++ str"]" ++ candidates ++ spc () ++ warn) (* Print an existential variable *) let pr_evar sigma (evk, evi) = let pegl = pr_evgl_sign sigma evi in hov 0 (pr_existential_key sigma evk ++ str " : " ++ pegl) (* Print an enumerated list of existential variables *) let rec pr_evars_int_hd head sigma i = function | [] -> mt () | (evk,evi)::rest -> (hov 0 (head i ++ pr_evar sigma (evk,evi))) ++ (match rest with [] -> mt () | _ -> fnl () ++ pr_evars_int_hd head sigma (i+1) rest) let pr_evars_int sigma i evs = pr_evars_int_hd (fun i -> str "Existential " ++ int i ++ str " =" ++ spc ()) sigma i (Evar.Map.bindings evs) let pr_evars sigma evs = pr_evars_int_hd (fun i -> mt ()) sigma 1 (Evar.Map.bindings evs) (* Display a list of evars given by their name, with a prefix *) let pr_ne_evar_set hd tl sigma l = if l != Evar.Set.empty then let l = Evar.Set.fold (fun ev -> Evar.Map.add ev (Evarutil.nf_evar_info sigma (Evd.find sigma ev))) l Evar.Map.empty in hd ++ pr_evars sigma l ++ tl else mt () let pr_selected_subgoal name sigma g = let pg = default_pr_goal { sigma=sigma ; it=g; } in v 0 (str "subgoal " ++ name ++ pr_goal_tag g ++ pr_goal_name sigma g ++ str " is:" ++ cut () ++ pg) let default_pr_subgoal n sigma = let rec prrec p = function | [] -> error "No such goal." | g::rest -> if Int.equal p 1 then pr_selected_subgoal (int n) sigma g else prrec (p-1) rest in prrec n let pr_internal_existential_key ev = str (string_of_existential ev) let print_evar_constraints gl sigma = let pr_env = match gl with | None -> fun e' -> pr_context_of e' sigma | Some g -> let env = Goal.V82.env sigma g in fun e' -> begin if Context.Named.equal (named_context env) (named_context e') then if Context.Rel.equal (rel_context env) (rel_context e') then mt () else pr_rel_context_of e' sigma ++ str " |-" ++ spc () else pr_context_of e' sigma ++ str " |-" ++ spc () end in let pr_evconstr (pbty,env,t1,t2) = let t1 = Evarutil.nf_evar sigma t1 and t2 = Evarutil.nf_evar sigma t2 in let env = (** We currently allow evar instances to refer to anonymous de Bruijn indices, so we protect the error printing code in this case by giving names to every de Bruijn variable in the rel_context of the conversion problem. MS: we should rather stop depending on anonymous variables, they can be used to indicate independency. Also, this depends on a strategy for naming/renaming *) Namegen.make_all_name_different env in str" " ++ hov 2 (pr_env env ++ pr_lconstr_env env sigma t1 ++ spc () ++ str (match pbty with | Reduction.CONV -> "==" | Reduction.CUMUL -> "<=") ++ spc () ++ pr_lconstr_env env sigma t2) in let pr_candidate ev evi (candidates,acc) = if Option.has_some evi.evar_candidates then (succ candidates, acc ++ pr_evar sigma (ev,evi) ++ fnl ()) else (candidates, acc) in let constraints = let _, cstrs = Evd.extract_all_conv_pbs sigma in if List.is_empty cstrs then mt () else fnl () ++ str (String.plural (List.length cstrs) "unification constraint") ++ str":" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_evconstr cstrs) in let candidates, ppcandidates = Evd.fold_undefined pr_candidate sigma (0,mt ()) in constraints ++ if candidates > 0 then fnl () ++ str (String.plural candidates "existential") ++ str" with candidates:" ++ fnl () ++ hov 0 ppcandidates else mt () let should_print_dependent_evars = ref false let _ = let open Goptions in declare_bool_option { optsync = true; optdepr = false; optname = "Printing Dependent Evars Line"; optkey = ["Printing";"Dependent";"Evars";"Line"]; optread = (fun () -> !should_print_dependent_evars); optwrite = (fun v -> should_print_dependent_evars := v) } let print_dependent_evars gl sigma seeds = let constraints = print_evar_constraints gl sigma in let evars () = if !should_print_dependent_evars then let evars = Evarutil.gather_dependent_evars sigma seeds in let evars = Evar.Map.fold begin fun e i s -> let e' = pr_internal_existential_key e in match i with | None -> s ++ str" " ++ e' ++ str " open," | Some i -> s ++ str " " ++ e' ++ str " using " ++ Evar.Set.fold begin fun d s -> pr_internal_existential_key d ++ str " " ++ s end i (str ",") end evars (str "") in fnl () ++ str "(dependent evars:" ++ evars ++ str ")" ++ fnl () else fnl () ++ str "(dependent evars: (printing disabled) )" ++ fnl () in constraints ++ delayed_emacs_cmd evars (* Print open subgoals. Checks for uninstantiated existential variables *) (* spiwack: [seeds] is for printing dependent evars in emacs mode. *) (* spiwack: [pr_first] is true when the first goal must be singled out and printed in its entirety. *) (* courtieu: in emacs mode, even less cases where the first goal is printed in its entirety *) let default_pr_subgoals ?(pr_first=true) close_cmd sigma seeds shelf stack goals = (** Printing functions for the extra informations. *) let rec print_stack a = function | [] -> Pp.int a | b::l -> Pp.int a ++ str"-" ++ print_stack b l in let print_unfocused l = match l with | [] -> None | a::l -> Some (str"unfocused: " ++ print_stack a l) in let print_shelf l = match l with | [] -> None | _ -> Some (str"shelved: " ++ Pp.int (List.length l)) in let rec print_comma_separated_list a l = match l with | [] -> a | b::l -> print_comma_separated_list (a++str", "++b) l in let print_extra_list l = match l with | [] -> Pp.mt () | a::l -> Pp.spc () ++ str"(" ++ print_comma_separated_list a l ++ str")" in let extra = Option.List.flatten [ print_unfocused stack ; print_shelf shelf ] in let print_extra = print_extra_list extra in let focused_if_needed = let needed = not (CList.is_empty extra) && pr_first in if needed then str" focused " else str" " (* non-breakable space *) in (** Main function *) let rec pr_rec n = function | [] -> (mt ()) | g::rest -> let pc = pr_concl n sigma g in let prest = pr_rec (n+1) rest in (cut () ++ pc ++ prest) in let print_multiple_goals g l = if pr_first then default_pr_goal { it = g ; sigma = sigma; } ++ fnl () ++ pr_rec 2 l else pr_rec 1 (g::l) in (* Side effect! This has to be made more robust *) let () = match close_cmd with | Some cmd -> Feedback.msg_info cmd | None -> () in match goals with | [] -> begin let exl = Evarutil.non_instantiated sigma in if Evar.Map.is_empty exl then (str"No more subgoals." ++ print_dependent_evars None sigma seeds) else let pei = pr_evars_int sigma 1 exl in (str "No more subgoals, but there are non-instantiated existential variables:" ++ fnl () ++ (hov 0 pei) ++ print_dependent_evars None sigma seeds ++ fnl () ++ str "You can use Grab Existential Variables.") end | [g] when not !Flags.print_emacs && pr_first -> let pg = default_pr_goal { it = g ; sigma = sigma; } in v 0 ( str "1" ++ focused_if_needed ++ str"subgoal" ++ print_extra ++ pr_goal_tag g ++ pr_goal_name sigma g ++ cut () ++ pg ++ print_dependent_evars (Some g) sigma seeds ) | g1::rest -> let goals = print_multiple_goals g1 rest in let ngoals = List.length rest+1 in v 0 ( int ngoals ++ focused_if_needed ++ str(String.plural ngoals "subgoal") ++ print_extra ++ str ((if display_name then (fun x -> x) else emacs_str) ", subgoal 1") ++ pr_goal_tag g1 ++ pr_goal_name sigma g1 ++ cut () ++ goals ++ print_dependent_evars (Some g1) sigma seeds ) (**********************************************************************) (* Abstraction layer *) type printer_pr = { pr_subgoals : ?pr_first:bool -> std_ppcmds option -> evar_map -> evar list -> Goal.goal list -> int list -> goal list -> std_ppcmds; pr_subgoal : int -> evar_map -> goal list -> std_ppcmds; pr_goal : goal sigma -> std_ppcmds; } let default_printer_pr = { pr_subgoals = default_pr_subgoals; pr_subgoal = default_pr_subgoal; pr_goal = default_pr_goal; } let printer_pr = ref default_printer_pr let set_printer_pr = (:=) printer_pr let pr_subgoals ?pr_first x = !printer_pr.pr_subgoals ?pr_first x let pr_subgoal x = !printer_pr.pr_subgoal x let pr_goal x = !printer_pr.pr_goal x (* End abstraction layer *) (**********************************************************************) let pr_open_subgoals ?(proof=Proof_global.give_me_the_proof ()) () = (* spiwack: it shouldn't be the job of the printer to look up stuff in the [evar_map], I did stuff that way because it was more straightforward, but seriously, [Proof.proof] should return [evar_info]-s instead. *) let p = proof in let (goals , stack , shelf, given_up, sigma ) = Proof.proof p in let stack = List.map (fun (l,r) -> List.length l + List.length r) stack in let seeds = Proof.V82.top_evars p in begin match goals with | [] -> let { Evd.it = bgoals ; sigma = bsigma } = Proof.V82.background_subgoals p in begin match bgoals,shelf,given_up with | [] , [] , [] -> pr_subgoals None sigma seeds shelf stack goals | [] , [] , _ -> Feedback.msg_info (str "No more subgoals, but there are some goals you gave up:"); fnl () ++ pr_subgoals ~pr_first:false None bsigma seeds [] [] given_up ++ fnl () ++ str "You need to go back and solve them." | [] , _ , _ -> Feedback.msg_info (str "All the remaining goals are on the shelf."); fnl () ++ pr_subgoals ~pr_first:false None bsigma seeds [] [] shelf | _ , _, _ -> let end_cmd = str "This subproof is complete, but there are some unfocused goals." ++ (let s = Proof_global.Bullet.suggest p in if Pp.is_empty s then s else fnl () ++ s) ++ fnl () in pr_subgoals ~pr_first:false (Some end_cmd) bsigma seeds shelf [] bgoals end | _ -> pr_subgoals None sigma seeds shelf stack goals end let pr_nth_open_subgoal n = let pf = get_pftreestate () in let { it=gls ; sigma=sigma } = Proof.V82.subgoals pf in pr_subgoal n sigma gls let pr_goal_by_id id = let p = Proof_global.give_me_the_proof () in try Proof.in_proof p (fun sigma -> let g = Evd.evar_key id sigma in pr_selected_subgoal (pr_id id) sigma g) with Not_found -> error "No such goal." let pr_goal_by_uid uid = let p = Proof_global.give_me_the_proof () in let g = Goal.get_by_uid uid in let pr gs = v 0 (str "goal / evar " ++ str uid ++ str " is:" ++ cut () ++ pr_goal gs) in try Proof.in_proof p (fun sigma -> pr {it=g;sigma=sigma;}) with Not_found -> error "Invalid goal identifier." (* Elementary tactics *) let pr_prim_rule = function | Cut (b,replace,id,t) -> if b then (* TODO: express "replace" *) (str"assert " ++ str"(" ++ pr_id id ++ str":" ++ pr_lconstr t ++ str")") else let cl = if replace then str"clear " ++ pr_id id ++ str"; " else mt() in (str"cut " ++ pr_constr t ++ str ";[" ++ cl ++ str"intro " ++ pr_id id ++ str"|idtac]") | Refine c -> str(if Termops.occur_meta c then "refine " else "exact ") ++ Constrextern.with_meta_as_hole pr_constr c (* Backwards compatibility *) let prterm = pr_lconstr (* Printer function for sets of Assumptions.assumptions. It is used primarily by the Print Assumptions command. *) type axiom = | Constant of constant (* An axiom or a constant. *) | Positive of MutInd.t (* A mutually inductive definition which has been assumed positive. *) | Guarded of constant (* a constant whose (co)fixpoints have been assumed to be guarded *) type context_object = | Variable of Id.t (* A section variable or a Let definition *) | Axiom of axiom * (Label.t * Context.Rel.t * types) list | Opaque of constant (* An opaque constant. *) | Transparent of constant (* Defines a set of [assumption] *) module OrderedContextObject = struct type t = context_object let compare_axiom x y = match x,y with | Constant k1 , Constant k2 -> con_ord k1 k2 | Positive m1 , Positive m2 -> MutInd.CanOrd.compare m1 m2 | Guarded k1 , Guarded k2 -> con_ord k1 k2 | _ , Constant _ -> 1 | _ , Positive _ -> 1 | _ -> -1 let compare x y = match x , y with | Variable i1 , Variable i2 -> Id.compare i1 i2 | Variable _ , _ -> -1 | _ , Variable _ -> 1 | Axiom (k1,_) , Axiom (k2, _) -> compare_axiom k1 k2 | Axiom _ , _ -> -1 | _ , Axiom _ -> 1 | Opaque k1 , Opaque k2 -> con_ord k1 k2 | Opaque _ , _ -> -1 | _ , Opaque _ -> 1 | Transparent k1 , Transparent k2 -> con_ord k1 k2 end module ContextObjectSet = Set.Make (OrderedContextObject) module ContextObjectMap = Map.Make (OrderedContextObject) let pr_assumptionset env s = if ContextObjectMap.is_empty s && engagement env = PredicativeSet then str "Closed under the global context" else let safe_pr_constant env kn = try pr_constant env kn with Not_found -> let mp,_,lab = repr_con kn in str (string_of_mp mp) ++ str "." ++ pr_label lab in let safe_pr_ltype typ = try str " : " ++ pr_ltype typ with e when CErrors.noncritical e -> mt () in let safe_pr_ltype_relctx (rctx, typ) = let sigma, env = get_current_context () in let env = Environ.push_rel_context rctx env in try str " " ++ pr_ltype_env env sigma typ with e when CErrors.noncritical e -> mt () in let pr_axiom env ax typ = match ax with | Constant kn -> safe_pr_constant env kn ++ safe_pr_ltype typ | Positive m -> hov 2 (MutInd.print m ++ spc () ++ strbrk"is positive.") | Guarded kn -> hov 2 (safe_pr_constant env kn ++ spc () ++ strbrk"is positive.") in let fold t typ accu = let (v, a, o, tr) = accu in match t with | Variable id -> let var = pr_id id ++ str " : " ++ pr_ltype typ in (var :: v, a, o, tr) | Axiom (axiom, []) -> let ax = pr_axiom env axiom typ in (v, ax :: a, o, tr) | Axiom (axiom,l) -> let ax = pr_axiom env axiom typ ++ cut() ++ prlist_with_sep cut (fun (lbl, ctx, ty) -> str " used in " ++ pr_label lbl ++ str " to prove:" ++ safe_pr_ltype_relctx (ctx,ty)) l in (v, ax :: a, o, tr) | Opaque kn -> let opq = safe_pr_constant env kn ++ safe_pr_ltype typ in (v, a, opq :: o, tr) | Transparent kn -> let tran = safe_pr_constant env kn ++ safe_pr_ltype typ in (v, a, o, tran :: tr) in let (vars, axioms, opaque, trans) = ContextObjectMap.fold fold s ([], [], [], []) in let theory = if is_impredicative_set env then [str "Set is impredicative"] else [] in let theory = if type_in_type env then str "Type hierarchy is collapsed (logic is inconsistent)" :: theory else theory in let opt_list title = function | [] -> None | l -> let section = title ++ fnl () ++ v 0 (prlist_with_sep fnl (fun s -> s) l) in Some section in let assums = [ opt_list (str "Transparent constants:") trans; opt_list (str "Section Variables:") vars; opt_list (str "Axioms:") axioms; opt_list (str "Opaque constants:") opaque; opt_list (str "Theory:") theory; ] in prlist_with_sep fnl (fun x -> x) (Option.List.flatten assums) let xor a b = (a && not b) || (not a && b) let pr_polymorphic b = let print = xor (Flags.is_universe_polymorphism ()) b in if print then if b then str"Polymorphic " else str"Monomorphic " else mt () let pr_universe_instance evd ctx = let inst = Univ.UContext.instance ctx in str"@{" ++ Univ.Instance.pr (Evd.pr_evd_level evd) inst ++ str"}"