(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* * on May-June 2006 for implementation of abstraction of pretty-printing of objects. *) open Pp open CErrors open Util open Names open Nameops open Term open Termops open Declarations open Environ open Impargs open Libobject open Libnames open Globnames open Recordops open Misctypes open Printer open Printmod type object_pr = { print_inductive : mutual_inductive -> std_ppcmds; print_constant_with_infos : constant -> std_ppcmds; print_section_variable : variable -> std_ppcmds; print_syntactic_def : kernel_name -> std_ppcmds; print_module : bool -> Names.module_path -> std_ppcmds; print_modtype : module_path -> std_ppcmds; print_named_decl : Context.Named.Declaration.t -> std_ppcmds; print_library_entry : bool -> (object_name * Lib.node) -> std_ppcmds option; print_context : bool -> int option -> Lib.library_segment -> std_ppcmds; print_typed_value_in_env : Environ.env -> Evd.evar_map -> Term.constr * Term.types -> Pp.std_ppcmds; print_eval : Reductionops.reduction_function -> env -> Evd.evar_map -> Constrexpr.constr_expr -> unsafe_judgment -> std_ppcmds; } let gallina_print_module = print_module let gallina_print_modtype = print_modtype (**************) (** Utilities *) let print_closed_sections = ref false let pr_infos_list l = v 0 (prlist_with_sep cut (fun x -> x) l) let with_line_skip l = if List.is_empty l then mt() else fnl() ++ fnl () ++ pr_infos_list l let blankline = mt() (* add a blank sentence in the list of infos *) let add_colon prefix = if ismt prefix then mt () else prefix ++ str ": " let int_or_no n = if Int.equal n 0 then str "no" else int n (*******************) (** Basic printing *) let print_basename sp = pr_global (ConstRef sp) let print_ref reduce ref = let typ = Global.type_of_global_unsafe ref in let typ = if reduce then let ctx,ccl = Reductionops.splay_prod_assum (Global.env()) Evd.empty typ in it_mkProd_or_LetIn ccl ctx else typ in let univs = Global.universes_of_global ref in let env = Global.env () in let bl = Universes.universe_binders_of_global ref in let sigma = Evd.from_ctx (Evd.evar_universe_context_of_binders bl) in let inst = if Global.is_polymorphic ref then Printer.pr_universe_instance sigma univs else mt () in hov 0 (pr_global ref ++ inst ++ str " :" ++ spc () ++ pr_ltype_env env sigma typ ++ Printer.pr_universe_ctx sigma univs) (********************************) (** Printing implicit arguments *) let pr_impl_name imp = pr_id (name_of_implicit imp) let print_impargs_by_name max = function | [] -> [] | impls -> let n = List.length impls in [hov 0 (str (String.plural n "Argument") ++ spc() ++ prlist_with_sep pr_comma pr_impl_name impls ++ spc() ++ str (String.conjugate_verb_to_be n) ++ str" implicit" ++ (if max then strbrk " and maximally inserted" else mt()))] let print_one_impargs_list l = let imps = List.filter is_status_implicit l in let maximps = List.filter Impargs.maximal_insertion_of imps in let nonmaximps = List.subtract Pervasives.(=) imps maximps in (* FIXME *) print_impargs_by_name false nonmaximps @ print_impargs_by_name true maximps let print_impargs_list prefix l = let l = extract_impargs_data l in List.flatten (List.map (fun (cond,imps) -> match cond with | None -> List.map (fun pp -> add_colon prefix ++ pp) (print_one_impargs_list imps) | Some (n1,n2) -> [v 2 (prlist_with_sep cut (fun x -> x) [(if ismt prefix then str "When" else prefix ++ str ", when") ++ str " applied to " ++ (if Int.equal n1 n2 then int_or_no n2 else if Int.equal n1 0 then str "no more than " ++ int n2 else int n1 ++ str " to " ++ int_or_no n2) ++ str (String.plural n2 " argument") ++ str ":"; v 0 (prlist_with_sep cut (fun x -> x) (if List.exists is_status_implicit imps then print_one_impargs_list imps else [str "No implicit arguments"]))])]) l) let print_renames_list prefix l = if List.is_empty l then [] else [add_colon prefix ++ str "Arguments are renamed to " ++ hv 2 (prlist_with_sep pr_comma (fun x -> x) (List.map pr_name l))] let need_expansion impl ref = let typ = Global.type_of_global_unsafe ref in let ctx = prod_assum typ in let open Context.Rel.Declaration in let nprods = List.count is_local_assum ctx in not (List.is_empty impl) && List.length impl >= nprods && let _,lastimpl = List.chop nprods impl in List.exists is_status_implicit lastimpl let print_impargs ref = let ref = Smartlocate.smart_global ref in let impl = implicits_of_global ref in let has_impl = not (List.is_empty impl) in (* Need to reduce since implicits are computed with products flattened *) pr_infos_list ([ print_ref (need_expansion (select_impargs_size 0 impl) ref) ref; blankline ] @ (if has_impl then print_impargs_list (mt()) impl else [str "No implicit arguments"])) (*********************) (** Printing Scopes *) let print_argument_scopes prefix = function | [Some sc] -> [add_colon prefix ++ str"Argument scope is [" ++ str sc ++ str"]"] | l when not (List.for_all Option.is_empty l) -> [add_colon prefix ++ hov 2 (str"Argument scopes are" ++ spc() ++ str "[" ++ pr_sequence (function Some sc -> str sc | None -> str "_") l ++ str "]")] | _ -> [] (*********************) (** Printing Opacity *) type opacity = | FullyOpaque | TransparentMaybeOpacified of Conv_oracle.level let opacity env = let open Context.Named.Declaration in function | VarRef v when is_local_def (Environ.lookup_named v env) -> Some(TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (VarKey v))) | ConstRef cst -> let cb = Environ.lookup_constant cst env in (match cb.const_body with | Undef _ -> None | OpaqueDef _ -> Some FullyOpaque | Def _ -> Some (TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (ConstKey cst)))) | _ -> None let print_opacity ref = match opacity (Global.env()) ref with | None -> [] | Some s -> [pr_global ref ++ str " is " ++ match s with | FullyOpaque -> str "opaque" | TransparentMaybeOpacified Conv_oracle.Opaque -> str "basically transparent but considered opaque for reduction" | TransparentMaybeOpacified lev when Conv_oracle.is_transparent lev -> str "transparent" | TransparentMaybeOpacified (Conv_oracle.Level n) -> str "transparent (with expansion weight " ++ int n ++ str ")" | TransparentMaybeOpacified Conv_oracle.Expand -> str "transparent (with minimal expansion weight)"] (*******************) (* *) let print_polymorphism ref = let poly = Global.is_polymorphic ref in let template_poly = Global.is_template_polymorphic ref in if Flags.is_universe_polymorphism () || poly || template_poly then [ pr_global ref ++ str " is " ++ str (if poly then "universe polymorphic" else if template_poly then "template universe polymorphic" else "not universe polymorphic") ] else [] let print_type_in_type ref = let unsafe = Global.is_type_in_type ref in if unsafe then [ pr_global ref ++ str " relies on an unsafe universe hierarchy"] else [] let print_primitive_record recflag mipv = function | Some (Some (_, ps,_)) -> let eta = match recflag with | Decl_kinds.CoFinite | Decl_kinds.Finite -> str" without eta conversion" | Decl_kinds.BiFinite -> str " with eta conversion" in [pr_id mipv.(0).mind_typename ++ str" has primitive projections" ++ eta ++ str"."] | _ -> [] let print_primitive ref = match ref with | IndRef ind -> let mib,_ = Global.lookup_inductive ind in print_primitive_record mib.mind_finite mib.mind_packets mib.mind_record | _ -> [] let print_name_infos ref = let impls = implicits_of_global ref in let scopes = Notation.find_arguments_scope ref in let renames = try Arguments_renaming.arguments_names ref with Not_found -> [] in let type_info_for_implicit = if need_expansion (select_impargs_size 0 impls) ref then (* Need to reduce since implicits are computed with products flattened *) [str "Expanded type for implicit arguments"; print_ref true ref; blankline] else [] in print_polymorphism ref @ print_type_in_type ref @ print_primitive ref @ type_info_for_implicit @ print_renames_list (mt()) renames @ print_impargs_list (mt()) impls @ print_argument_scopes (mt()) scopes let print_id_args_data test pr id l = if List.exists test l then pr (str "For " ++ pr_id id) l else [] let print_args_data_of_inductive_ids get test pr sp mipv = List.flatten (Array.to_list (Array.mapi (fun i mip -> print_id_args_data test pr mip.mind_typename (get (IndRef (sp,i))) @ List.flatten (Array.to_list (Array.mapi (fun j idc -> print_id_args_data test pr idc (get (ConstructRef ((sp,i),j+1)))) mip.mind_consnames))) mipv)) let print_inductive_implicit_args = print_args_data_of_inductive_ids implicits_of_global (fun l -> not (List.is_empty (positions_of_implicits l))) print_impargs_list let print_inductive_renames = print_args_data_of_inductive_ids (fun r -> try Arguments_renaming.arguments_names r with Not_found -> []) ((!=) Anonymous) print_renames_list let print_inductive_argument_scopes = print_args_data_of_inductive_ids Notation.find_arguments_scope (Option.has_some) print_argument_scopes (*********************) (* "Locate" commands *) type logical_name = | Term of global_reference | Dir of global_dir_reference | Syntactic of kernel_name | ModuleType of module_path | Tactic of Nametab.ltac_constant | Undefined of qualid let locate_any_name ref = let (loc,qid) = qualid_of_reference ref in try Term (Nametab.locate qid) with Not_found -> try Syntactic (Nametab.locate_syndef qid) with Not_found -> try Dir (Nametab.locate_dir qid) with Not_found -> try ModuleType (Nametab.locate_modtype qid) with Not_found -> Undefined qid let pr_located_qualid = function | Term ref -> let ref_str = match ref with ConstRef _ -> "Constant" | IndRef _ -> "Inductive" | ConstructRef _ -> "Constructor" | VarRef _ -> "Variable" in str ref_str ++ spc () ++ pr_path (Nametab.path_of_global ref) | Syntactic kn -> str "Notation" ++ spc () ++ pr_path (Nametab.path_of_syndef kn) | Dir dir -> let s,dir = match dir with | DirOpenModule (dir,_) -> "Open Module", dir | DirOpenModtype (dir,_) -> "Open Module Type", dir | DirOpenSection (dir,_) -> "Open Section", dir | DirModule (dir,_) -> "Module", dir | DirClosedSection dir -> "Closed Section", dir in str s ++ spc () ++ pr_dirpath dir | ModuleType mp -> str "Module Type" ++ spc () ++ pr_path (Nametab.path_of_modtype mp) | Tactic kn -> str "Ltac" ++ spc () ++ pr_path (Nametab.path_of_tactic kn) | Undefined qid -> pr_qualid qid ++ spc () ++ str "not a defined object." let canonize_ref = function | ConstRef c -> let kn = Constant.canonical c in if KerName.equal (Constant.user c) kn then None else Some (ConstRef (Constant.make1 kn)) | IndRef (ind,i) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (IndRef (MutInd.make1 kn, i)) | ConstructRef ((ind,i),j) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (ConstructRef ((MutInd.make1 kn, i),j)) | VarRef _ -> None let display_alias = function | Term r -> begin match canonize_ref r with | None -> mt () | Some r' -> let q' = Nametab.shortest_qualid_of_global Id.Set.empty r' in spc () ++ str "(alias of " ++ pr_qualid q' ++ str ")" end | _ -> mt () let locate_term qid = let expand = function | TrueGlobal ref -> Term ref, Nametab.shortest_qualid_of_global Id.Set.empty ref | SynDef kn -> Syntactic kn, Nametab.shortest_qualid_of_syndef Id.Set.empty kn in List.map expand (Nametab.locate_extended_all qid) let locate_tactic qid = let all = Nametab.locate_extended_all_tactic qid in List.map (fun kn -> (Tactic kn, Nametab.shortest_qualid_of_tactic kn)) all let locate_module qid = let all = Nametab.locate_extended_all_dir qid in let map dir = match dir with | DirModule (_, (mp, _)) -> Some (Dir dir, Nametab.shortest_qualid_of_module mp) | DirOpenModule _ -> Some (Dir dir, qid) | _ -> None in List.map_filter map all let locate_modtype qid = let all = Nametab.locate_extended_all_modtype qid in let map mp = ModuleType mp, Nametab.shortest_qualid_of_modtype mp in let modtypes = List.map map all in (** Don't forget the opened module types: they are not part of the same name tab. *) let all = Nametab.locate_extended_all_dir qid in let map dir = match dir with | DirOpenModtype _ -> Some (Dir dir, qid) | _ -> None in modtypes @ List.map_filter map all let print_located_qualid name flags ref = let (loc,qid) = qualid_of_reference ref in let located = [] in let located = if List.mem `LTAC flags then locate_tactic qid @ located else located in let located = if List.mem `MODTYPE flags then locate_modtype qid @ located else located in let located = if List.mem `MODULE flags then locate_module qid @ located else located in let located = if List.mem `TERM flags then locate_term qid @ located else located in match located with | [] -> let (dir,id) = repr_qualid qid in if DirPath.is_empty dir then str "No " ++ str name ++ str " of basename" ++ spc () ++ pr_id id else str "No " ++ str name ++ str " of suffix" ++ spc () ++ pr_qualid qid | l -> prlist_with_sep fnl (fun (o,oqid) -> hov 2 (pr_located_qualid o ++ (if not (qualid_eq oqid qid) then spc() ++ str "(shorter name to refer to it in current context is " ++ pr_qualid oqid ++ str")" else mt ()) ++ display_alias o)) l let print_located_term ref = print_located_qualid "term" [`TERM] ref let print_located_tactic ref = print_located_qualid "tactic" [`LTAC] ref let print_located_module ref = print_located_qualid "module" [`MODULE; `MODTYPE] ref let print_located_qualid ref = print_located_qualid "object" [`TERM; `LTAC; `MODULE; `MODTYPE] ref (******************************************) (**** Printing declarations and judgments *) (**** Gallina layer *****) let gallina_print_typed_value_in_env env sigma (trm,typ) = (pr_lconstr_env env sigma trm ++ fnl () ++ str " : " ++ pr_ltype_env env sigma typ) (* To be improved; the type should be used to provide the types in the abstractions. This should be done recursively inside pr_lconstr, so that the pretty-print of a proposition (P:(nat->nat)->Prop)(P [u]u) synthesizes the type nat of the abstraction on u *) let print_named_def name body typ = let pbody = pr_lconstr body in let ptyp = pr_ltype typ in let pbody = if isCast body then surround pbody else pbody in (str "*** [" ++ str name ++ str " " ++ hov 0 (str ":=" ++ brk (1,2) ++ pbody ++ spc () ++ str ":" ++ brk (1,2) ++ ptyp) ++ str "]") let print_named_assum name typ = str "*** [" ++ str name ++ str " : " ++ pr_ltype typ ++ str "]" let gallina_print_named_decl = let open Context.Named.Declaration in function | LocalAssum (id, typ) -> print_named_assum (Id.to_string id) typ | LocalDef (id, body, typ) -> print_named_def (Id.to_string id) body typ let assumptions_for_print lna = List.fold_right (fun na env -> add_name na env) lna empty_names_context (*********************) (* *) let gallina_print_inductive sp = let env = Global.env() in let mib = Environ.lookup_mind sp env in let mipv = mib.mind_packets in pr_mutual_inductive_body env sp mib ++ with_line_skip (print_primitive_record mib.mind_finite mipv mib.mind_record @ print_inductive_renames sp mipv @ print_inductive_implicit_args sp mipv @ print_inductive_argument_scopes sp mipv) let print_named_decl id = gallina_print_named_decl (Global.lookup_named id) ++ fnl () let gallina_print_section_variable id = print_named_decl id ++ with_line_skip (print_name_infos (VarRef id)) let print_body env evd = function | Some c -> pr_lconstr_env env evd c | None -> (str"") let print_typed_body env evd (val_0,typ) = (print_body env evd val_0 ++ fnl () ++ str " : " ++ pr_ltype_env env evd typ) let ungeneralized_type_of_constant_type t = Typeops.type_of_constant_type (Global.env ()) t let print_instance sigma cb = if cb.const_polymorphic then pr_universe_instance sigma cb.const_universes else mt() let print_constant with_values sep sp = let cb = Global.lookup_constant sp in let val_0 = Global.body_of_constant_body cb in let typ = Declareops.type_of_constant cb in let typ = ungeneralized_type_of_constant_type typ in let univs = Univ.instantiate_univ_context (Global.universes_of_constant_body cb) in let ctx = Evd.evar_universe_context_of_binders (Universes.universe_binders_of_global (ConstRef sp)) in let env = Global.env () and sigma = Evd.from_ctx ctx in let pr_ltype = pr_ltype_env env sigma in hov 0 (pr_polymorphic cb.const_polymorphic ++ match val_0 with | None -> str"*** [ " ++ print_basename sp ++ print_instance sigma cb ++ str " : " ++ cut () ++ pr_ltype typ ++ str" ]" ++ Printer.pr_universe_ctx sigma univs | _ -> print_basename sp ++ print_instance sigma cb ++ str sep ++ cut () ++ (if with_values then print_typed_body env sigma (val_0,typ) else pr_ltype typ)++ Printer.pr_universe_ctx sigma univs) let gallina_print_constant_with_infos sp = print_constant true " = " sp ++ with_line_skip (print_name_infos (ConstRef sp)) let gallina_print_syntactic_def kn = let qid = Nametab.shortest_qualid_of_syndef Id.Set.empty kn and (vars,a) = Syntax_def.search_syntactic_definition kn in let c = Notation_ops.glob_constr_of_notation_constr Loc.ghost a in hov 2 (hov 4 (str "Notation " ++ pr_qualid qid ++ prlist (fun id -> spc () ++ pr_id id) (List.map fst vars) ++ spc () ++ str ":=") ++ spc () ++ Constrextern.without_specific_symbols [Notation.SynDefRule kn] pr_glob_constr c) let gallina_print_leaf_entry with_values ((sp,kn as oname),lobj) = let sep = if with_values then " = " else " : " and tag = object_tag lobj in match (oname,tag) with | (_,"VARIABLE") -> (* Outside sections, VARIABLES still exist but only with universes constraints *) (try Some(print_named_decl (basename sp)) with Not_found -> None) | (_,"CONSTANT") -> Some (print_constant with_values sep (constant_of_kn kn)) | (_,"INDUCTIVE") -> Some (gallina_print_inductive (mind_of_kn kn)) | (_,"MODULE") -> let (mp,_,l) = repr_kn kn in Some (print_module with_values (MPdot (mp,l))) | (_,"MODULE TYPE") -> let (mp,_,l) = repr_kn kn in Some (print_modtype (MPdot (mp,l))) | (_,("AUTOHINT"|"GRAMMAR"|"SYNTAXCONSTANT"|"PPSYNTAX"|"TOKEN"|"CLASS"| "COERCION"|"REQUIRE"|"END-SECTION"|"STRUCTURE")) -> None (* To deal with forgotten cases... *) | (_,s) -> None let gallina_print_library_entry with_values ent = let pr_name (sp,_) = pr_id (basename sp) in match ent with | (oname,Lib.Leaf lobj) -> gallina_print_leaf_entry with_values (oname,lobj) | (oname,Lib.OpenedSection (dir,_)) -> Some (str " >>>>>>> Section " ++ pr_name oname) | (oname,Lib.ClosedSection _) -> Some (str " >>>>>>> Closed Section " ++ pr_name oname) | (_,Lib.CompilingLibrary (dir,_)) -> Some (str " >>>>>>> Library " ++ pr_dirpath dir) | (oname,Lib.OpenedModule _) -> Some (str " >>>>>>> Module " ++ pr_name oname) | (oname,Lib.ClosedModule _) -> Some (str " >>>>>>> Closed Module " ++ pr_name oname) | (_,Lib.FrozenState _) -> None let gallina_print_context with_values = let rec prec n = function | h::rest when Option.is_empty n || Option.get n > 0 -> (match gallina_print_library_entry with_values h with | None -> prec n rest | Some pp -> prec (Option.map ((+) (-1)) n) rest ++ pp ++ fnl ()) | _ -> mt () in prec let gallina_print_eval red_fun env sigma _ {uj_val=trm;uj_type=typ} = let ntrm = red_fun env sigma trm in (str " = " ++ gallina_print_typed_value_in_env env sigma (ntrm,typ)) (******************************************) (**** Printing abstraction layer *) let default_object_pr = { print_inductive = gallina_print_inductive; print_constant_with_infos = gallina_print_constant_with_infos; print_section_variable = gallina_print_section_variable; print_syntactic_def = gallina_print_syntactic_def; print_module = gallina_print_module; print_modtype = gallina_print_modtype; print_named_decl = gallina_print_named_decl; print_library_entry = gallina_print_library_entry; print_context = gallina_print_context; print_typed_value_in_env = gallina_print_typed_value_in_env; print_eval = gallina_print_eval; } let object_pr = ref default_object_pr let set_object_pr = (:=) object_pr let print_inductive x = !object_pr.print_inductive x let print_constant_with_infos c = !object_pr.print_constant_with_infos c let print_section_variable c = !object_pr.print_section_variable c let print_syntactic_def x = !object_pr.print_syntactic_def x let print_module x = !object_pr.print_module x let print_modtype x = !object_pr.print_modtype x let print_named_decl x = !object_pr.print_named_decl x let print_library_entry x = !object_pr.print_library_entry x let print_context x = !object_pr.print_context x let print_typed_value_in_env x = !object_pr.print_typed_value_in_env x let print_eval x = !object_pr.print_eval x (******************************************) (**** Printing declarations and judgments *) (**** Abstract layer *****) let print_typed_value x = print_typed_value_in_env (Global.env ()) Evd.empty x let print_judgment env sigma {uj_val=trm;uj_type=typ} = print_typed_value_in_env env sigma (trm, typ) let print_safe_judgment env sigma j = let trm = Safe_typing.j_val j in let typ = Safe_typing.j_type j in print_typed_value_in_env env sigma (trm, typ) (*********************) (* *) let print_full_context () = print_context true None (Lib.contents ()) let print_full_context_typ () = print_context false None (Lib.contents ()) let print_full_pure_context () = let rec prec = function | ((_,kn),Lib.Leaf lobj)::rest -> let pp = match object_tag lobj with | "CONSTANT" -> let con = Global.constant_of_delta_kn kn in let cb = Global.lookup_constant con in let typ = ungeneralized_type_of_constant_type cb.const_type in hov 0 ( match cb.const_body with | Undef _ -> str "Parameter " ++ print_basename con ++ str " : " ++ cut () ++ pr_ltype typ | OpaqueDef lc -> str "Theorem " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype typ ++ str "." ++ fnl () ++ str "Proof " ++ pr_lconstr (Opaqueproof.force_proof (Global.opaque_tables ()) lc) | Def c -> str "Definition " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype typ ++ cut () ++ str " := " ++ pr_lconstr (Mod_subst.force_constr c)) ++ str "." ++ fnl () ++ fnl () | "INDUCTIVE" -> let mind = Global.mind_of_delta_kn kn in let mib = Global.lookup_mind mind in pr_mutual_inductive_body (Global.env()) mind mib ++ str "." ++ fnl () ++ fnl () | "MODULE" -> (* TODO: make it reparsable *) let (mp,_,l) = repr_kn kn in print_module true (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | "MODULE TYPE" -> (* TODO: make it reparsable *) (* TODO: make it reparsable *) let (mp,_,l) = repr_kn kn in print_modtype (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | _ -> mt () in prec rest ++ pp | _::rest -> prec rest | _ -> mt () in prec (Lib.contents ()) (* For printing an inductive definition with its constructors and elimination, assume that the declaration of constructors and eliminations follows the definition of the inductive type *) (* This is designed to print the contents of an opened section *) let read_sec_context r = let loc,qid = qualid_of_reference r in let dir = try Nametab.locate_section qid with Not_found -> user_err_loc (loc,"read_sec_context", str "Unknown section.") in let rec get_cxt in_cxt = function | (_,Lib.OpenedSection ((dir',_),_) as hd)::rest -> if DirPath.equal dir dir' then (hd::in_cxt) else get_cxt (hd::in_cxt) rest | (_,Lib.ClosedSection _)::rest -> error "Cannot print the contents of a closed section." (* LEM: Actually, we could if we wanted to. *) | [] -> [] | hd::rest -> get_cxt (hd::in_cxt) rest in let cxt = Lib.contents () in List.rev (get_cxt [] cxt) let print_sec_context sec = print_context true None (read_sec_context sec) let print_sec_context_typ sec = print_context false None (read_sec_context sec) let print_any_name = function | Term (ConstRef sp) -> print_constant_with_infos sp | Term (IndRef (sp,_)) -> print_inductive sp | Term (ConstructRef ((sp,_),_)) -> print_inductive sp | Term (VarRef sp) -> print_section_variable sp | Syntactic kn -> print_syntactic_def kn | Dir (DirModule(dirpath,(mp,_))) -> print_module (printable_body dirpath) mp | Dir _ -> mt () | ModuleType mp -> print_modtype mp | Tactic kn -> mt () (** TODO *) | Undefined qid -> try (* Var locale de but, pas var de section... donc pas d'implicits *) let dir,str = repr_qualid qid in if not (DirPath.is_empty dir) then raise Not_found; let open Context.Named.Declaration in str |> Global.lookup_named |> set_id str |> print_named_decl with Not_found -> errorlabstrm "print_name" (pr_qualid qid ++ spc () ++ str "not a defined object.") let print_name = function | ByNotation (loc,ntn,sc) -> print_any_name (Term (Notation.interp_notation_as_global_reference loc (fun _ -> true) ntn sc)) | AN ref -> print_any_name (locate_any_name ref) let print_opaque_name qid = let env = Global.env () in match Nametab.global qid with | ConstRef cst -> let cb = Global.lookup_constant cst in if Declareops.constant_has_body cb then print_constant_with_infos cst else error "Not a defined constant." | IndRef (sp,_) -> print_inductive sp | ConstructRef cstr as gr -> let ty = Universes.unsafe_type_of_global gr in print_typed_value (mkConstruct cstr, ty) | VarRef id -> let open Context.Named.Declaration in lookup_named id env |> set_id id |> print_named_decl let print_about_any loc k = match k with | Term ref -> let rb = Reductionops.ReductionBehaviour.print ref in Dumpglob.add_glob loc ref; pr_infos_list (print_ref false ref :: blankline :: print_name_infos ref @ (if Pp.ismt rb then [] else [rb]) @ print_opacity ref @ [hov 0 (str "Expands to: " ++ pr_located_qualid k)]) | Syntactic kn -> let () = match Syntax_def.search_syntactic_definition kn with | [],Notation_term.NRef ref -> Dumpglob.add_glob loc ref | _ -> () in v 0 ( print_syntactic_def kn ++ fnl () ++ hov 0 (str "Expands to: " ++ pr_located_qualid k)) | Dir _ | ModuleType _ | Tactic _ | Undefined _ -> hov 0 (pr_located_qualid k) let print_about = function | ByNotation (loc,ntn,sc) -> print_about_any loc (Term (Notation.interp_notation_as_global_reference loc (fun _ -> true) ntn sc)) | AN ref -> print_about_any (loc_of_reference ref) (locate_any_name ref) (* for debug *) let inspect depth = print_context false (Some depth) (Lib.contents ()) (*************************************************************************) (* Pretty-printing functions coming from classops.ml *) open Classops let print_coercion_value v = pr_lconstr (get_coercion_value v) let print_class i = let cl,_ = class_info_from_index i in pr_class cl let print_path ((i,j),p) = hov 2 ( str"[" ++ hov 0 (prlist_with_sep pr_semicolon print_coercion_value p) ++ str"] : ") ++ print_class i ++ str" >-> " ++ print_class j let _ = Classops.install_path_printer print_path let print_graph () = prlist_with_sep fnl print_path (inheritance_graph()) let print_classes () = pr_sequence pr_class (classes()) let print_coercions () = pr_sequence print_coercion_value (coercions()) let index_of_class cl = try fst (class_info cl) with Not_found -> errorlabstrm "index_of_class" (pr_class cl ++ spc() ++ str "not a defined class.") let print_path_between cls clt = let i = index_of_class cls in let j = index_of_class clt in let p = try lookup_path_between_class (i,j) with Not_found -> errorlabstrm "index_cl_of_id" (str"No path between " ++ pr_class cls ++ str" and " ++ pr_class clt ++ str ".") in print_path ((i,j),p) let print_canonical_projections () = prlist_with_sep fnl (fun ((r1,r2),o) -> pr_cs_pattern r2 ++ str " <- " ++ pr_global r1 ++ str " ( " ++ pr_lconstr o.o_DEF ++ str " )") (canonical_projections ()) (*************************************************************************) (*************************************************************************) (* Pretty-printing functions for type classes *) open Typeclasses let pr_typeclass env t = print_ref false t.cl_impl let print_typeclasses () = let env = Global.env () in prlist_with_sep fnl (pr_typeclass env) (typeclasses ()) let pr_instance env i = (* gallina_print_constant_with_infos i.is_impl *) (* lighter *) print_ref false (instance_impl i) ++ begin match hint_priority i with | None -> mt () | Some i -> spc () ++ str "|" ++ spc () ++ int i end let print_all_instances () = let env = Global.env () in let inst = all_instances () in prlist_with_sep fnl (pr_instance env) inst let print_instances r = let env = Global.env () in let inst = instances r in prlist_with_sep fnl (pr_instance env) inst