(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* std_ppcmds = function | DRel -> str "*" | DSort -> str "Sort" | DRef _ -> str "Ref" | DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t | DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2 | DApp (t1,t2) -> f t1 ++ spc() ++ f t2 | DCase (_,t1,t2,ta) -> str "case" | DFix _ -> str "fix" | DCoFix _ -> str "cofix" | DCons ((t,dopt),tl) -> f t ++ (match dopt with Some t' -> str ":=" ++ f t' | None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl | DNil -> str "[]" (* * Functional iterators for the t datatype * a.k.a boring and error-prone boilerplate code *) let map f = function | (DRel | DSort | DNil | DRef _) as c -> c | DCtx (ctx,c) -> DCtx (f ctx, f c) | DLambda (t,c) -> DLambda (f t, f c) | DApp (t,u) -> DApp (f t,f u) | DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl) | DFix (ia,i,ta,ca) -> DFix (ia,i,Array.map f ta,Array.map f ca) | DCoFix(i,ta,ca) -> DCoFix (i,Array.map f ta,Array.map f ca) | DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u) let compare x y = let make_name n = match n with | DRef(ConstRef con) -> DRef(ConstRef(constant_of_kn(canonical_con con))) | DRef(IndRef (kn,i)) -> DRef(IndRef(mind_of_kn(canonical_mind kn),i)) | DRef(ConstructRef ((kn,i),j ))-> DRef(ConstructRef((mind_of_kn(canonical_mind kn),i),j)) | k -> k in Pervasives.compare (make_name x) (make_name y) let fold f acc = function | (DRel | DNil | DSort | DRef _) -> acc | DCtx (ctx,c) -> f (f acc ctx) c | DLambda (t,c) -> f (f acc t) c | DApp (t,u) -> f (f acc t) u | DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl | DFix (ia,i,ta,ca) -> Array.fold_left f (Array.fold_left f acc ta) ca | DCoFix(i,ta,ca) -> Array.fold_left f (Array.fold_left f acc ta) ca | DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u let choose f = function | (DRel | DSort | DNil | DRef _) -> invalid_arg "choose" | DCtx (ctx,c) -> f ctx | DLambda (t,c) -> f t | DApp (t,u) -> f u | DCase (ci,p,c,bl) -> f c | DFix (ia,i,ta,ca) -> f ta.(0) | DCoFix (i,ta,ca) -> f ta.(0) | DCons ((t,topt),u) -> f u let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a = let head w = map (fun _ -> ()) w in if compare (head c1) (head c2) <> 0 then invalid_arg "fold2:compare" else match c1,c2 with | (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _) -> acc | (DCtx (c1,t1), DCtx (c2,t2) | DApp (c1,t1), DApp (c2,t2) | DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2 | DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) -> array_fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2 | DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) -> array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2 | DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) -> array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2 | DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) -> f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2 | _ -> assert false let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t = let head w = map (fun _ -> ()) w in if compare (head c1) (head c2) <> 0 then invalid_arg "map2_t:compare" else match c1,c2 with | (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _) as cc -> let (c,_) = cc in c | DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2) | DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2) | DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2) | DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) -> DCase (ci, f p1 p2, f c1 c2, array_map2 f bl1 bl2) | DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) -> DFix (ia,i,array_map2 f ta1 ta2,array_map2 f ca1 ca2) | DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) -> DCoFix (i,array_map2 f ta1 ta2,array_map2 f ca1 ca2) | DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) -> DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2) | _ -> assert false let terminal = function | (DRel | DSort | DNil | DRef _) -> true | _ -> false end (* * Terms discrimination nets * Uses the general dnet datatype on DTerm.t * (here you can restart reading) *) (* * Construction of the module *) module type IDENT = sig type t val compare : t -> t -> int val subst : substitution -> t -> t val constr_of : t -> constr end module type OPT = sig val reduce : constr -> constr val direction : bool end module Make = functor (Ident : IDENT) -> functor (Opt : OPT) -> struct module TDnet : Dnet.S with type ident=Ident.t and type 'a structure = 'a DTerm.t and type meta = metavariable = Dnet.Make(DTerm)(Ident) (struct type t = metavariable let compare = Pervasives.compare end) type t = TDnet.t type ident = TDnet.ident type 'a pattern = 'a TDnet.pattern type term_pattern = term_pattern DTerm.t pattern type idset = TDnet.Idset.t type result = ident * (constr*existential_key) * Termops.subst open DTerm open TDnet let rec pat_of_constr c : term_pattern = match kind_of_term c with | Rel _ -> Term DRel | Sort _ -> Term DSort | Var i -> Term (DRef (VarRef i)) | Const c -> Term (DRef (ConstRef c)) | Ind i -> Term (DRef (IndRef i)) | Construct c -> Term (DRef (ConstructRef c)) | Term.Meta _ -> assert false | Evar (i,_) -> Meta i | Case (ci,c1,c2,ca) -> Term(DCase(ci,pat_of_constr c1,pat_of_constr c2,Array.map pat_of_constr ca)) | Fix ((ia,i),(_,ta,ca)) -> Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca)) | CoFix (i,(_,ta,ca)) -> Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca)) | Cast (c,_,_) -> pat_of_constr c | Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c)) | (Prod (_,_,_) | LetIn(_,_,_,_)) -> let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c)) | App (f,ca) -> Array.fold_left (fun c a -> Term (DApp (c,a))) (pat_of_constr f) (Array.map pat_of_constr ca) and ctx_of_constr ctx c : term_pattern * term_pattern = match kind_of_term c with | Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c | LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c | _ -> ctx,pat_of_constr c let empty_ctx : term_pattern -> term_pattern = function | Meta _ as c -> c | Term (DCtx(_,_)) as c -> c | c -> Term (DCtx (Term DNil, c)) (* * Basic primitives *) let empty = TDnet.empty let subst s t = let sleaf id = Ident.subst s id in let snode = function | DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr)) | n -> n in TDnet.map sleaf snode t let union = TDnet.union let add (c:constr) (id:Ident.t) (dn:t) = let c = Opt.reduce c in let c = empty_ctx (pat_of_constr c) in TDnet.add dn c id let new_meta_no = let ctr = ref 0 in fun () -> decr ctr; !ctr let new_meta_no = Evarutil.new_untyped_evar let neutral_meta = new_meta_no() let new_meta () = Meta (new_meta_no()) let new_evar () = mkEvar(new_meta_no(),[||]) let rec remove_cap : term_pattern -> term_pattern = function | Term (DCons (t,u)) -> Term (DCons (t,remove_cap u)) | Term DNil -> new_meta() | Meta _ as m -> m | _ -> assert false let under_prod : term_pattern -> term_pattern = function | Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u)) | Meta m -> Term (DCtx(new_meta(), Meta m)) | _ -> assert false let init = let e = new_meta_no() in (mkEvar (e,[||]),e) let rec e_subst_evar i (t:unit->constr) c = match kind_of_term c with | Evar (j,_) when i=j -> t() | _ -> map_constr (e_subst_evar i t) c let subst_evar i c = e_subst_evar i (fun _ -> c) (* debug *) let rec pr_term_pattern p = (fun pr_t -> function | Term t -> pr_t t | Meta m -> str"["++Util.pr_int (Obj.magic m)++str"]" ) (pr_dconstr pr_term_pattern) p let search_pat cpat dpat dn (up,plug) = let whole_c = subst_evar plug cpat up in (* if we are at the root, add an empty context *) let dpat = if isEvar_or_Meta up then under_prod (empty_ctx dpat) else dpat in TDnet.Idset.fold (fun id acc -> let c_id = Opt.reduce (Ident.constr_of id) in let (ctx,wc) = try Termops.align_prod_letin whole_c c_id with Invalid_argument _ -> [],c_id in let up = it_mkProd_or_LetIn up ctx in let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in try (id,(up,plug),Termops.filtering ctx Reduction.CUMUL wc whole_c)::acc with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc ) (TDnet.find_match dpat dn) [] let fold_pattern_neutral f = fold_pattern (fun acc (mset,m,dn) -> if m=neutral_meta then acc else f m dn acc) let fold_pattern_nonlin f = let defined = ref Gmap.empty in fold_pattern_neutral ( fun m dn acc -> let dn = try TDnet.inter dn (Gmap.find m !defined) with Not_found -> dn in defined := Gmap.add m dn !defined; f m dn acc ) let fold_pattern_up f acc dpat cpat dn (up,plug) = fold_pattern_nonlin ( fun m dn acc -> f dn (subst_evar plug (e_subst_evar neutral_meta new_evar cpat) up, m) acc ) acc dpat dn let possibly_under pat k dn (up,plug) = let rec aux fst dn (up,plug) acc = let cpat = pat() in let dpat = pat_of_constr cpat in let dpat = if fst then under_prod (empty_ctx dpat) else dpat in (k dn (up,plug)) @ snd (fold_pattern_up (aux false) acc dpat cpat dn (up,plug)) in aux true dn (up,plug) [] let eq_pat eq () = mkApp(eq,[|mkEvar(neutral_meta,[||]);new_evar();new_evar()|]) let app_pat () = mkApp(new_evar(),[|mkEvar(neutral_meta,[||])|]) (* * High-level primitives describing specific search problems *) let search_pattern dn pat = let pat = Opt.reduce pat in search_pat pat (empty_ctx (pat_of_constr pat)) dn init let search_concl dn pat = let pat = Opt.reduce pat in search_pat pat (under_prod (empty_ctx (pat_of_constr pat))) dn init let search_eq_concl dn eq pat = let pat = Opt.reduce pat in let eq_pat = eq_pat eq () in let eq_dpat = under_prod (empty_ctx (pat_of_constr eq_pat)) in snd (fold_pattern_up (fun dn up acc -> search_pat pat (pat_of_constr pat) dn up @ acc ) [] eq_dpat eq_pat dn init) let search_head_concl dn pat = let pat = Opt.reduce pat in possibly_under app_pat (search_pat pat (pat_of_constr pat)) dn init let find_all dn = Idset.elements (TDnet.find_all dn) let map f dn = TDnet.map f (fun x -> x) dn end module type S = sig type t type ident type result = ident * (constr*existential_key) * Termops.subst val empty : t val add : constr -> ident -> t -> t val union : t -> t -> t val subst : substitution -> t -> t val search_pattern : t -> constr -> result list val search_concl : t -> constr -> result list val search_head_concl : t -> constr -> result list val search_eq_concl : t -> constr -> constr -> result list val find_all : t -> ident list val map : (ident -> ident) -> t -> t end