(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open Util open Names open Term open Termops open Univ open Evd open Declarations open Environ open Closure open Esubst open Reduction exception Elimconst (**********************************************************************) (* The type of (machine) stacks (= lambda-bar-calculus' contexts) *) type 'a stack_member = | Zapp of 'a list | Zcase of case_info * 'a * 'a array | Zfix of 'a * 'a stack | Zshift of int | Zupdate of 'a and 'a stack = 'a stack_member list let empty_stack = [] let append_stack_list l s = match (l,s) with | ([],s) -> s | (l1, Zapp l :: s) -> Zapp (l1@l) :: s | (l1, s) -> Zapp l1 :: s let append_stack v s = append_stack_list (Array.to_list v) s let rec stack_args_size = function | Zapp l::s -> List.length l + stack_args_size s | Zshift(_)::s -> stack_args_size s | Zupdate(_)::s -> stack_args_size s | _ -> 0 (* When used as an argument stack (only Zapp can appear) *) let rec decomp_stack = function | Zapp[v]::s -> Some (v, s) | Zapp(v::l)::s -> Some (v, (Zapp l :: s)) | Zapp [] :: s -> decomp_stack s | _ -> None let array_of_stack s = let rec stackrec = function | [] -> [] | Zapp args :: s -> args :: (stackrec s) | _ -> assert false in Array.of_list (List.concat (stackrec s)) let rec list_of_stack = function | [] -> [] | Zapp args :: s -> args @ (list_of_stack s) | _ -> assert false let rec app_stack = function | f, [] -> f | f, (Zapp [] :: s) -> app_stack (f, s) | f, (Zapp args :: s) -> app_stack (applist (f, args), s) | _ -> assert false let rec stack_assign s p c = match s with | Zapp args :: s -> let q = List.length args in if p >= q then Zapp args :: stack_assign s (p-q) c else (match list_chop p args with (bef, _::aft) -> Zapp (bef@c::aft) :: s | _ -> assert false) | _ -> s let rec stack_tail p s = if p = 0 then s else match s with | Zapp args :: s -> let q = List.length args in if p >= q then stack_tail (p-q) s else Zapp (list_skipn p args) :: s | _ -> failwith "stack_tail" let rec stack_nth s p = match s with | Zapp args :: s -> let q = List.length args in if p >= q then stack_nth s (p-q) else List.nth args p | _ -> raise Not_found (**************************************************************) (* The type of (machine) states (= lambda-bar-calculus' cuts) *) type state = constr * constr stack type contextual_reduction_function = env -> evar_map -> constr -> constr type reduction_function = contextual_reduction_function type local_reduction_function = evar_map -> constr -> constr type contextual_stack_reduction_function = env -> evar_map -> constr -> constr * constr list type stack_reduction_function = contextual_stack_reduction_function type local_stack_reduction_function = evar_map -> constr -> constr * constr list type contextual_state_reduction_function = env -> evar_map -> state -> state type state_reduction_function = contextual_state_reduction_function type local_state_reduction_function = evar_map -> state -> state (*************************************) (*** Reduction Functions Operators ***) (*************************************) let safe_evar_value sigma ev = try Some (Evd.existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None let rec whd_app_state sigma (x, stack as s) = match kind_of_term x with | App (f,cl) -> whd_app_state sigma (f, append_stack cl stack) | Cast (c,_,_) -> whd_app_state sigma (c, stack) | Evar ev -> (match safe_evar_value sigma ev with Some c -> whd_app_state sigma (c,stack) | _ -> s) | _ -> s let safe_meta_value sigma ev = try Some (Evd.meta_value sigma ev) with Not_found -> None let appterm_of_stack (f,s) = (f,list_of_stack s) let whd_stack sigma x = appterm_of_stack (whd_app_state sigma (x, empty_stack)) let whd_castapp_stack = whd_stack let strong whdfun env sigma t = let rec strongrec env t = map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in strongrec env t let local_strong whdfun sigma = let rec strongrec t = map_constr strongrec (whdfun sigma t) in strongrec let rec strong_prodspine redfun sigma c = let x = redfun sigma c in match kind_of_term x with | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b) | _ -> x (*************************************) (*** Reduction using bindingss ***) (*************************************) (* This signature is very similar to Closure.RedFlagsSig except there is eta but no per-constant unfolding *) module type RedFlagsSig = sig type flags type flag val fbeta : flag val fdelta : flag val feta : flag val fiota : flag val fzeta : flag val mkflags : flag list -> flags val red_beta : flags -> bool val red_delta : flags -> bool val red_eta : flags -> bool val red_iota : flags -> bool val red_zeta : flags -> bool end (* Compact Implementation *) module RedFlags = (struct type flag = int type flags = int let fbeta = 1 let fdelta = 2 let feta = 8 let fiota = 16 let fzeta = 32 let mkflags = List.fold_left (lor) 0 let red_beta f = f land fbeta <> 0 let red_delta f = f land fdelta <> 0 let red_eta f = f land feta <> 0 let red_iota f = f land fiota <> 0 let red_zeta f = f land fzeta <> 0 end : RedFlagsSig) open RedFlags (* Local *) let beta = mkflags [fbeta] let eta = mkflags [feta] let zeta = mkflags [fzeta] let betaiota = mkflags [fiota; fbeta] let betaiotazeta = mkflags [fiota; fbeta;fzeta] (* Contextual *) let delta = mkflags [fdelta] let betadelta = mkflags [fbeta;fdelta;fzeta] let betadeltaeta = mkflags [fbeta;fdelta;fzeta;feta] let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fiota] let betadeltaiota_nolet = mkflags [fbeta;fdelta;fiota] let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fiota;feta] let betaetalet = mkflags [fbeta;feta;fzeta] let betalet = mkflags [fbeta;fzeta] (* Beta Reduction tools *) let rec stacklam recfun env t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl | _ -> recfun (substl env t, stack) let beta_applist (c,l) = stacklam app_stack [] c (append_stack_list l empty_stack) (* Iota reduction tools *) type 'a miota_args = { mP : constr; (* the result type *) mconstr : constr; (* the constructor *) mci : case_info; (* special info to re-build pattern *) mcargs : 'a list; (* the constructor's arguments *) mlf : 'a array } (* the branch code vector *) let reducible_mind_case c = match kind_of_term c with | Construct _ | CoFix _ -> true | _ -> false let contract_cofix (bodynum,(types,names,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let reduce_mind_case mia = match kind_of_term mia.mconstr with | Construct (ind_sp,i) -> (* let ncargs = (fst mia.mci).(i-1) in*) let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1),real_cargs) | CoFix cofix -> let cofix_def = contract_cofix cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false (* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in substl (list_tabulate make_Fi nbodies) bodies.(bodynum) let fix_recarg ((recindices,bodynum),_) stack = assert (0 <= bodynum & bodynum < Array.length recindices); let recargnum = Array.get recindices bodynum in try Some (recargnum, stack_nth stack recargnum) with Not_found -> None type fix_reduction_result = NotReducible | Reduced of state let reduce_fix whdfun sigma fix stack = match fix_recarg fix stack with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = whdfun sigma (recarg, empty_stack) in let stack' = stack_assign stack recargnum (app_stack recarg') in (match kind_of_term recarg'hd with | Construct _ -> Reduced (contract_fix fix, stack') | _ -> NotReducible) (* Generic reduction function *) (* Y avait un commentaire pour whd_betadeltaiota : NB : Cette fonction alloue peu c'est l'appel ``let (c,cargs) = whfun (recarg, empty_stack)'' ------------------- qui coute cher *) let rec whd_state_gen flags ts env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | Rel n when red_delta flags -> (match lookup_rel n env with | (_,Some body,_) -> whrec (lift n body, stack) | _ -> s) | Var id when red_delta flags -> (match lookup_named id env with | (_,Some body,_) -> whrec (body, stack) | _ -> s) | Evar ev -> (match safe_evar_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Meta ev -> (match safe_meta_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Const const when is_transparent_constant ts const -> (match constant_opt_value env const with | Some body -> whrec (body, stack) | None -> s) | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> let env' = push_rel (na,None,t) env in let whrec' = whd_state_gen flags ts env' sigma in (match kind_of_term (app_stack (whrec' (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec' (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix (fun _ -> whrec) sigma fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | x -> s in whrec let local_whd_state_gen flags sigma = let rec whrec (x, stack as s) = match kind_of_term x with | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (_,_,c) -> (match decomp_stack stack with | Some (a,m) when red_beta flags -> stacklam whrec [a] c m | None when red_eta flags -> (match kind_of_term (app_stack (whrec (c, empty_stack))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec (array_last cl, empty_stack) in match kind_of_term x', decomp_stack l' with | Rel 1, None -> let lc = Array.sub cl 0 (napp-1) in let u = if napp=1 then f else appvect (f,lc) in if noccurn 1 u then (pop u,empty_stack) else s | _ -> s else s | _ -> s) | _ -> s) | Case (ci,p,d,lf) when red_iota flags -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | Fix fix when red_iota flags -> (match reduce_fix (fun _ ->whrec) sigma fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | Evar ev -> (match safe_evar_value sigma ev with Some c -> whrec (c,stack) | None -> s) | Meta ev -> (match safe_meta_value sigma ev with Some c -> whrec (c,stack) | None -> s) | x -> s in whrec let stack_red_of_state_red f sigma x = appterm_of_stack (f sigma (x, empty_stack)) let red_of_state_red f sigma x = app_stack (f sigma (x,empty_stack)) (* 1. Beta Reduction Functions *) let whd_beta_state = local_whd_state_gen beta let whd_beta_stack = stack_red_of_state_red whd_beta_state let whd_beta = red_of_state_red whd_beta_state (* Nouveau ! *) let whd_betaetalet_state = local_whd_state_gen betaetalet let whd_betaetalet_stack = stack_red_of_state_red whd_betaetalet_state let whd_betaetalet = red_of_state_red whd_betaetalet_state let whd_betalet_state = local_whd_state_gen betalet let whd_betalet_stack = stack_red_of_state_red whd_betalet_state let whd_betalet = red_of_state_red whd_betalet_state (* 2. Delta Reduction Functions *) let whd_delta_state e = whd_state_gen delta full_transparent_state e let whd_delta_stack env = stack_red_of_state_red (whd_delta_state env) let whd_delta env = red_of_state_red (whd_delta_state env) let whd_betadelta_state e = whd_state_gen betadelta full_transparent_state e let whd_betadelta_stack env = stack_red_of_state_red (whd_betadelta_state env) let whd_betadelta env = red_of_state_red (whd_betadelta_state env) let whd_betadeltaeta_state e = whd_state_gen betadeltaeta full_transparent_state e let whd_betadeltaeta_stack env = stack_red_of_state_red (whd_betadeltaeta_state env) let whd_betadeltaeta env = red_of_state_red (whd_betadeltaeta_state env) (* 3. Iota reduction Functions *) let whd_betaiota_state = local_whd_state_gen betaiota let whd_betaiota_stack = stack_red_of_state_red whd_betaiota_state let whd_betaiota = red_of_state_red whd_betaiota_state let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta let whd_betaiotazeta_stack = stack_red_of_state_red whd_betaiotazeta_state let whd_betaiotazeta = red_of_state_red whd_betaiotazeta_state let whd_betadeltaiota_state env = whd_state_gen betadeltaiota full_transparent_state env let whd_betadeltaiota_stack env = stack_red_of_state_red (whd_betadeltaiota_state env) let whd_betadeltaiota env = red_of_state_red (whd_betadeltaiota_state env) let whd_betadeltaiota_state_using ts env = whd_state_gen betadeltaiota ts env let whd_betadeltaiota_stack_using ts env = stack_red_of_state_red (whd_betadeltaiota_state_using ts env) let whd_betadeltaiota_using ts env = red_of_state_red (whd_betadeltaiota_state_using ts env) let whd_betadeltaiotaeta_state env = whd_state_gen betadeltaiotaeta full_transparent_state env let whd_betadeltaiotaeta_stack env = stack_red_of_state_red (whd_betadeltaiotaeta_state env) let whd_betadeltaiotaeta env = red_of_state_red (whd_betadeltaiotaeta_state env) let whd_betadeltaiota_nolet_state env = whd_state_gen betadeltaiota_nolet full_transparent_state env let whd_betadeltaiota_nolet_stack env = stack_red_of_state_red (whd_betadeltaiota_nolet_state env) let whd_betadeltaiota_nolet env = red_of_state_red (whd_betadeltaiota_nolet_state env) (* 4. Eta reduction Functions *) let whd_eta c = app_stack (local_whd_state_gen eta Evd.empty (c,empty_stack)) (* 5. Zeta Reduction Functions *) let whd_zeta c = app_stack (local_whd_state_gen zeta Evd.empty (c,empty_stack)) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) (* Replacing defined evars for error messages *) let rec whd_evar sigma c = match kind_of_term c with | Evar ev -> (match safe_evar_value sigma ev with Some c -> whd_evar sigma c | None -> c) | Sort s -> whd_sort_variable sigma c | _ -> c let nf_evar = local_strong whd_evar (* lazy reduction functions. The infos must be created for each term *) (* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add a [nf_evar] here *) let clos_norm_flags flgs env sigma t = try norm_val (create_clos_infos ~evars:(safe_evar_value sigma) flgs env) (inject t) with Anomaly _ -> error "Tried to normalized ill-typed term" let nf_beta = clos_norm_flags Closure.beta empty_env let nf_betaiota = clos_norm_flags Closure.betaiota empty_env let nf_betadeltaiota env sigma = clos_norm_flags Closure.betadeltaiota env sigma (* Attention reduire un beta-redexe avec un argument qui n'est pas une variable, peut changer enormement le temps de conversion lors du type checking : (fun x => x + x) M *) let rec whd_betaiota_preserving_vm_cast env sigma t = let rec stacklam_var subst t stack = match (decomp_stack stack,kind_of_term t) with | Some (h,stacktl), Lambda (_,_,c) -> begin match kind_of_term h with | Rel i when not (evaluable_rel i env) -> stacklam_var (h::subst) c stacktl | Var id when not (evaluable_named id env)-> stacklam_var (h::subst) c stacktl | _ -> whrec (substl subst t, stack) end | _ -> whrec (substl subst t, stack) and whrec (x, stack as s) = match kind_of_term x with | Evar ev -> (match safe_evar_value sigma ev with | Some body -> whrec (body, stack) | None -> s) | Cast (c,VMcast,t) -> let c = app_stack (whrec (c,empty_stack)) in let t = app_stack (whrec (t,empty_stack)) in (mkCast(c,VMcast,t),stack) | Cast (c,DEFAULTcast,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, append_stack cl stack) | Lambda (na,t,c) -> (match decomp_stack stack with | Some (a,m) -> stacklam_var [a] c m | _ -> s) | Case (ci,p,d,lf) -> let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack (c,cargs), lf), stack) | x -> s in app_stack (whrec (t,empty_stack)) let nf_betaiota_preserving_vm_cast = strong whd_betaiota_preserving_vm_cast (********************************************************************) (* Conversion *) (********************************************************************) (* let fkey = Profile.declare_profile "fhnf";; let fhnf info v = Profile.profile2 fkey fhnf info v;; let fakey = Profile.declare_profile "fhnf_apply";; let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;; *) let is_transparent k = Conv_oracle.get_strategy k <> Conv_oracle.Opaque (* Conversion utility functions *) type conversion_test = constraints -> constraints let pb_is_equal pb = pb = CONV let pb_equal = function | CUMUL -> CONV | CONV -> CONV let sort_cmp = sort_cmp let test_conversion (f: ?l2r:bool-> ?evars:'a->'b) env sigma x y = try let _ = f ~evars:(safe_evar_value sigma) env x y in true with NotConvertible -> false | Anomaly _ -> error "Conversion test raised an anomaly" let is_conv env sigma = test_conversion Reduction.conv env sigma let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq let test_trans_conversion (f: ?l2r:bool-> ?evars:'a->'b) reds env sigma x y = try let _ = f ~evars:(safe_evar_value sigma) reds env x y in true with NotConvertible -> false | Anomaly _ -> error "Conversion test raised an anomaly" let is_trans_conv reds env sigma = test_trans_conversion Reduction.trans_conv reds env sigma let is_trans_conv_leq reds env sigma = test_trans_conversion Reduction.trans_conv_leq reds env sigma let is_trans_fconv = function | CONV -> is_trans_conv | CUMUL -> is_trans_conv_leq (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) let whd_meta sigma c = match kind_of_term c with | Meta p -> (try meta_value sigma p with Not_found -> c) | _ -> c (* Try to replace all metas. Does not replace metas in the metas' values * Differs from (strong whd_meta). *) let plain_instance s c = let rec irec n u = match kind_of_term u with | Meta p -> (try lift n (List.assoc p s) with Not_found -> u) | App (f,l) when isCast f -> let (f,_,t) = destCast f in let l' = Array.map (irec n) l in (match kind_of_term f with | Meta p -> (* Don't flatten application nodes: this is used to extract a proof-term from a proof-tree and we want to keep the structure of the proof-tree *) (try let g = List.assoc p s in match kind_of_term g with | App _ -> let h = id_of_string "H" in mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l')) | _ -> mkApp (g,l') with Not_found -> mkApp (f,l')) | _ -> mkApp (irec n f,l')) | Cast (m,_,_) when isMeta m -> (try lift n (List.assoc (destMeta m) s) with Not_found -> u) | _ -> map_constr_with_binders succ irec n u in if s = [] then c else irec 0 c (* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota] has (unfortunately) different subtle side effects: - ** Order of subgoals ** If the lemma is a case analysis with parameters, it will move the parameters as first subgoals (e.g. "case H" applied on "H:D->A/\B|-C" will present the subgoal |-D first while w/o betaiota the subgoal |-D would have come last). - ** Betaiota-contraction in statement ** If the lemma has a parameter which is a function and this function is applied in the lemma, then the _strong_ betaiota will contract the application of the function to its argument (e.g. "apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will result in applying the lemma 0=0 in which "(fun x => x) 0" has been contracted). A goal to rewrite may then fail or succeed differently. - ** Naming of hypotheses ** If a lemma is a function of the form "fun H:(forall a:A, P a) => .. F H .." where the expected type of H is "forall b:A, P b", then, without reduction, the application of the lemma will generate a subgoal "forall a:A, P a" (and intro will use name "a"), while with reduction, it will generate a subgoal "forall b:A, P b" (and intro will use name "b"). - ** First-order pattern-matching ** If a lemma has the type "(fun x => p) t" then rewriting t may fail if the type of the lemma is first beta-reduced (this typically happens when rewriting a single variable and the type of the lemma is obtained by meta_instance (with empty map) which itself calls instance with this empty map). *) let instance sigma s c = (* if s = [] then c else *) local_strong whd_betaiota sigma (plain_instance s c) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly "hnf_prod_app: Need a product" let hnf_prod_appvect env sigma t nl = Array.fold_left (hnf_prod_app env sigma) t nl let hnf_prod_applist env sigma t nl = List.fold_left (hnf_prod_app env sigma) t nl let hnf_lam_app env sigma t n = match kind_of_term (whd_betadeltaiota env sigma t) with | Lambda (_,_,b) -> subst1 n b | _ -> anomaly "hnf_lam_app: Need an abstraction" let hnf_lam_appvect env sigma t nl = Array.fold_left (hnf_lam_app env sigma) t nl let hnf_lam_applist env sigma t nl = List.fold_left (hnf_lam_app env sigma) t nl let splay_prod env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_lam env sigma = let rec decrec env m c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_prod_assum env sigma = let rec prodec_rec env l c = let t = whd_betadeltaiota_nolet env sigma c in match kind_of_term t with | Prod (x,t,c) -> prodec_rec (push_rel (x,None,t) env) (add_rel_decl (x, None, t) l) c | LetIn (x,b,t,c) -> prodec_rec (push_rel (x, Some b, t) env) (add_rel_decl (x, Some b, t) l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> l,t in prodec_rec env empty_rel_context let splay_arity env sigma c = let l, c = splay_prod env sigma c in match kind_of_term c with | Sort s -> l,s | _ -> invalid_arg "splay_arity" let sort_of_arity env sigma c = snd (splay_arity env sigma c) let splay_prod_n env sigma n = let rec decrec env m ln c = if m = 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Prod (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (add_rel_decl (n,None,a) ln) c0 | _ -> invalid_arg "splay_prod_n" in decrec env n empty_rel_context let splay_lam_n env sigma n = let rec decrec env m ln c = if m = 0 then (ln,c) else match kind_of_term (whd_betadeltaiota env sigma c) with | Lambda (n,a,c0) -> decrec (push_rel (n,None,a) env) (m-1) (add_rel_decl (n,None,a) ln) c0 | _ -> invalid_arg "splay_lam_n" in decrec env n empty_rel_context exception NotASort let decomp_sort env sigma t = match kind_of_term (whd_betadeltaiota env sigma t) with | Sort s -> s | _ -> raise NotASort let is_sort env sigma arity = try let _ = decomp_sort env sigma arity in true with NotASort -> false (* reduction to head-normal-form allowing delta/zeta only in argument of case/fix (heuristic used by evar_conv) *) let whd_betaiota_deltazeta_for_iota_state ts env sigma s = let rec whrec s = let (t, stack as s) = whd_betaiota_state sigma s in match kind_of_term t with | Case (ci,p,d,lf) -> let (cr,crargs) = whd_betadeltaiota_stack_using ts env sigma d in let rslt = mkCase (ci, p, applist (cr,crargs), lf) in if reducible_mind_case cr then whrec (rslt, stack) else s | Fix fix -> (match reduce_fix (whd_betadeltaiota_state_using ts env) sigma fix stack with | Reduced s -> whrec s | NotReducible -> s) | _ -> s in whrec s (* A reduction function like whd_betaiota but which keeps casts * and does not reduce redexes containing existential variables. * Used in Correctness. * Added by JCF, 29/1/98. *) let whd_programs_stack env sigma = let rec whrec (x, stack as s) = match kind_of_term x with | App (f,cl) -> let n = Array.length cl - 1 in let c = cl.(n) in if occur_existential c then s else whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack) | LetIn (_,b,_,c) -> if occur_existential b then s else stacklam whrec [b] c stack | Lambda (_,_,c) -> (match decomp_stack stack with | None -> s | Some (a,m) -> stacklam whrec [a] c m) | Case (ci,p,d,lf) -> if occur_existential d then s else let (c,cargs) = whrec (d, empty_stack) in if reducible_mind_case c then whrec (reduce_mind_case {mP=p; mconstr=c; mcargs=list_of_stack cargs; mci=ci; mlf=lf}, stack) else (mkCase (ci, p, app_stack(c,cargs), lf), stack) | Fix fix -> (match reduce_fix (fun _ ->whrec) sigma fix stack with | Reduced s' -> whrec s' | NotReducible -> s) | _ -> s in whrec let whd_programs env sigma x = app_stack (whd_programs_stack env sigma (x, empty_stack)) exception IsType let find_conclusion env sigma = let rec decrec env c = let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 | t -> t in decrec env let is_arity env sigma c = match find_conclusion env sigma c with | Sort _ -> true | _ -> false (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = match meta_opt_fvalue evd mv with | Some (b,_) -> instance evd (List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas)) b.rebus | None -> mkMeta mv in valrec mv let meta_instance sigma b = let c_sigma = List.map (fun mv -> (mv,meta_value sigma mv)) (Metaset.elements b.freemetas) in if c_sigma = [] then b.rebus else instance sigma c_sigma b.rebus let nf_meta sigma c = meta_instance sigma (mk_freelisted c) (* Instantiate metas that create beta/iota redexes *) let meta_reducible_instance evd b = let fm = Metaset.elements b.freemetas in let metas = List.fold_left (fun l mv -> match (try meta_opt_fvalue evd mv with Not_found -> None) with | Some (g,(_,s)) -> (mv,(g.rebus,s))::l | None -> l) [] fm in let rec irec u = let u = whd_betaiota Evd.empty u in match kind_of_term u with | Case (ci,p,c,bl) when isMeta c or isCast c & isMeta (pi1 (destCast c)) -> let m = try destMeta c with e when Errors.noncritical e -> destMeta (pi1 (destCast c)) in (match try let g,s = List.assoc m metas in if isConstruct g or s <> CoerceToType then Some g else None with Not_found -> None with | Some g -> irec (mkCase (ci,p,g,bl)) | None -> mkCase (ci,irec p,c,Array.map irec bl)) | App (f,l) when isMeta f or isCast f & isMeta (pi1 (destCast f)) -> let m = try destMeta f with e when Errors.noncritical e -> destMeta (pi1 (destCast f)) in (match try let g,s = List.assoc m metas in if isLambda g or s <> CoerceToType then Some g else None with Not_found -> None with | Some g -> irec (mkApp (g,l)) | None -> mkApp (f,Array.map irec l)) | Meta m -> (try let g,s = List.assoc m metas in if s<>CoerceToType then irec g else u with Not_found -> u) | _ -> map_constr irec u in if fm = [] then (* nf_betaiota? *) b.rebus else irec b.rebus let head_unfold_under_prod ts env _ c = let unfold cst = if Cpred.mem cst (snd ts) then match constant_opt_value env cst with | Some c -> c | None -> mkConst cst else mkConst cst in let rec aux c = match kind_of_term c with | Prod (n,t,c) -> mkProd (n,aux t, aux c) | _ -> let (h,l) = decompose_app c in match kind_of_term h with | Const cst -> beta_applist (unfold cst,l) | _ -> c in aux c