(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* if Evd.is_defined sigma ev then whd_ise sigma (existential_value sigma (ev,args)) else raise (Uninstantiated_evar ev) | _ -> c (* Expand evars, possibly in the head of an application *) let whd_castappevar_stack sigma c = let rec whrec (c, l as s) = match kind_of_term c with | Evar (ev,args) when Evd.mem sigma ev & Evd.is_defined sigma ev -> whrec (existential_value sigma (ev,args), l) | Cast (c,_,_) -> whrec (c, l) | App (f,args) -> whrec (f, Array.fold_right (fun a l -> a::l) args l) | _ -> s in whrec (c, []) let whd_castappevar sigma c = applist (whd_castappevar_stack sigma c) let nf_evar = Pretype_errors.nf_evar let j_nf_evar = Pretype_errors.j_nf_evar let jl_nf_evar = Pretype_errors.jl_nf_evar let jv_nf_evar = Pretype_errors.jv_nf_evar let tj_nf_evar = Pretype_errors.tj_nf_evar let nf_evar_info evc info = { info with evar_concl = Reductionops.nf_evar evc info.evar_concl; evar_hyps = map_named_val (Reductionops.nf_evar evc) info.evar_hyps} let nf_evars evm = Evd.fold (fun ev evi evm' -> Evd.add evm' ev (nf_evar_info evm evi)) evm Evd.empty let nf_evar_defs isevars = Evd.evars_reset_evd (nf_evars (Evd.evars_of isevars)) isevars let nf_isevar isevars = nf_evar (Evd.evars_of isevars) let j_nf_isevar isevars = j_nf_evar (Evd.evars_of isevars) let jl_nf_isevar isevars = jl_nf_evar (Evd.evars_of isevars) let jv_nf_isevar isevars = jv_nf_evar (Evd.evars_of isevars) let tj_nf_isevar isevars = tj_nf_evar (Evd.evars_of isevars) (**********************) (* Creating new metas *) (**********************) (* Generator of metavariables *) let new_meta = let meta_ctr = ref 0 in fun () -> incr meta_ctr; !meta_ctr let mk_new_meta () = mkMeta(new_meta()) let collect_evars emap c = let rec collrec acc c = match kind_of_term c with | Evar (k,_) -> if Evd.mem emap k & not (Evd.is_defined emap k) then k::acc else (* No recursion on the evar instantiation *) acc | _ -> fold_constr collrec acc c in list_uniquize (collrec [] c) let push_dependent_evars sigma emap = Evd.fold (fun ev {evar_concl = ccl} (sigma',emap') -> List.fold_left (fun (sigma',emap') ev -> (Evd.add sigma' ev (Evd.find emap' ev),Evd.remove emap' ev)) (sigma',emap') (collect_evars emap' ccl)) emap (sigma,emap) (* replaces a mapping of existentials into a mapping of metas. Problem if an evar appears in the type of another one (pops anomaly) *) let evars_to_metas sigma (emap, c) = let emap = nf_evars emap in let sigma',emap' = push_dependent_evars sigma emap in let change_exist evar = let ty = nf_betaiota (nf_evar emap (existential_type emap evar)) in let n = new_meta() in mkCast (mkMeta n, DEFAULTcast, ty) in let rec replace c = match kind_of_term c with Evar (k,_ as ev) when Evd.mem emap' k -> change_exist ev | _ -> map_constr replace c in (sigma', replace c) (* The list of non-instantiated existential declarations *) let non_instantiated sigma = let listev = to_list sigma in List.fold_left (fun l (ev,evd) -> if evd.evar_body = Evar_empty then ((ev,nf_evar_info sigma evd)::l) else l) [] listev (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = try let b = meta_fvalue evd mv in instance (List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas)) b.rebus with Anomaly _ | Not_found -> mkMeta mv in valrec mv let meta_instance env b = let c_sigma = List.map (fun mv -> (mv,meta_value env mv)) (Metaset.elements b.freemetas) in instance c_sigma b.rebus let nf_meta env c = meta_instance env (mk_freelisted c) (**********************) (* Creating new evars *) (**********************) (* Generator of existential names *) let new_untyped_evar = let evar_ctr = ref 0 in fun () -> incr evar_ctr; existential_of_int !evar_ctr (*------------------------------------* * functional operations on evar sets * *------------------------------------*) (* All ids of sign must be distincts! *) let new_evar_instance sign evd typ ?(src=(dummy_loc,InternalHole)) instance = let ctxt = named_context_of_val sign in assert (List.length instance = named_context_length ctxt); if not (list_distinct (ids_of_named_context ctxt)) then anomaly "new_evar_instance: two vars have the same name"; let newev = new_untyped_evar() in (evar_declare sign newev typ ~src:src evd, mkEvar (newev,Array.of_list instance)) let make_evar_instance_with_rel env = let n = rel_context_length (rel_context env) in let vars = fold_named_context (fun env (id,b,_) l -> (* if b=None then *) mkVar id :: l (*else l*)) env ~init:[] in snd (fold_rel_context (fun env (_,b,_) (i,l) -> (i-1, (*if b=None then *) mkRel i :: l (*else l*))) env ~init:(n,vars)) let make_subst env args = snd (fold_named_context (fun env (id,b,c) (args,l) -> match b, args with | (* None *) _ , a::rest -> (rest, (id,a)::l) (* | Some _, _ -> g*) | _ -> anomaly "Instance does not match its signature") env ~init:(List.rev args,[])) (* [new_isevar] declares a new existential in an env env with type typ *) (* Converting the env into the sign of the evar to define *) let push_rel_context_to_named_context env = let (subst,_,env) = Sign.fold_rel_context (fun (na,c,t) (subst,avoid,env) -> let id = next_name_away na avoid in ((mkVar id)::subst, id::avoid, push_named (id,option_map (substl subst) c, type_app (substl subst) t) env)) (rel_context env) ~init:([],ids_of_named_context (named_context env),env) in (subst, (named_context_val env)) let new_evar evd env ?(src=(dummy_loc,InternalHole)) typ = let subst,sign = push_rel_context_to_named_context env in let typ' = substl subst typ in let instance = make_evar_instance_with_rel env in new_evar_instance sign evd typ' ~src:src instance (* The same using side-effect *) let e_new_evar evd env ?(src=(dummy_loc,InternalHole)) ty = let (evd',ev) = new_evar !evd env ~src:src ty in evd := evd'; ev (*------------------------------------* * operations on the evar constraints * *------------------------------------*) (* Pb: defined Rels and Vars should not be considered as a pattern... *) let is_pattern inst = let rec is_hopat l = function [] -> true | t :: tl -> (isRel t or isVar t) && not (List.mem t l) && is_hopat (t::l) tl in is_hopat [] (Array.to_list inst) let evar_well_typed_body evd ev evi body = try let env = evar_env evi in let ty = evi.evar_concl in Typing.check env (evars_of evd) body ty; true with e -> pperrnl (str "Ill-typed evar instantiation: " ++ fnl() ++ pr_evar_defs evd ++ fnl() ++ str "----> " ++ int ev ++ str " := " ++ print_constr body); false let strict_inverse = false let inverse_instance env isevars ev evi inst rhs = let subst = make_subst (evar_env evi) (Array.to_list inst) in let subst = List.map (fun (x,y) -> (y,mkVar x)) subst in let evd = ref isevars in let error () = error_not_clean env (evars_of !evd) ev rhs (evar_source ev !evd) in let rec subs rigid k t = match kind_of_term t with | Rel i -> if i<=k then t else (try List.assoc (mkRel (i-k)) subst with Not_found -> if rigid then error() else if strict_inverse then failwith "cannot solve pb yet" else t) | Var id -> (try List.assoc t subst with Not_found -> if rigid then error() else if not strict_inverse && List.exists (fun (id',_,_) -> id=id') (evar_context evi) then failwith "cannot solve pb yet" else t) | Evar (ev,args) -> if Evd.is_defined_evar !evd (ev,args) then subs rigid k (existential_value (evars_of !evd) (ev,args)) else let args' = Array.map (subs false k) args in mkEvar (ev,args') | _ -> map_constr_with_binders succ (subs rigid) k t in let body = subs true 0 (nf_evar (evars_of isevars) rhs) in (!evd,body) let is_defined_equation env evd (ev,inst) rhs = is_pattern inst && not (occur_evar ev rhs) && try let evi = Evd.find (evars_of evd) ev in let (evd',body) = inverse_instance env evd ev evi inst rhs in evar_well_typed_body evd' ev evi body with Failure _ -> false (* Redefines an evar with a smaller context (i.e. it may depend on less * variables) such that c becomes closed. * Example: in [x:?1; y:(list ?2)] x=y /\ x=(nil bool) * ?3 <-- ?1 no pb: env of ?3 is larger than ?1's * ?1 <-- (list ?2) pb: ?2 may depend on x, but not ?1. * What we do is that ?2 is defined by a new evar ?4 whose context will be * a prefix of ?2's env, included in ?1's env. Concretely, the assumptions are "env |- ev : T" and "Gamma |- ev[hyps:=args]" for some Gamma whose de Bruijn context has length k. We create "env' |- ev' : T" for some env' <= env and define ev:=ev' *) let do_restrict_hyps env k evd ev args = let args = Array.to_list args in let evi = Evd.find (evars_of !evd) ev in let hyps = evar_context evi in let (hyps',ncargs) = list_filter2 (fun _ a -> closedn k a) (hyps,args) in (* No care is taken in case the evar type uses vars filtered out! Assuming that the restriction comes from a well-typed Flex/Flex unification problem (see real_clean), the type of the evar cannot depend on variables that are not in the scope of the other evar, since this other evar has the same type (up to unification). Since moreover, the evar contexts uses names only, the restriction raise no de Bruijn reallocation problem *) let env' = Sign.fold_named_context push_named hyps' ~init:(reset_context env) in let nc = e_new_evar evd env' ~src:(evar_source ev !evd) evi.evar_concl in evd := Evd.evar_define ev nc !evd; let (evn,_) = destEvar nc in mkEvar(evn,Array.of_list ncargs) exception Dependency_error of identifier let rec check_and_clear_in_constr evd c ids = (* returns a new constr where all the evars have been 'cleaned' (ie the hypotheses ids have been removed from the contexts of evars *) let check id' = if List.mem id' ids then raise (Dependency_error id') in match kind_of_term c with | ( Rel _ | Meta _ | Sort _ ) -> c | ( Const _ | Ind _ | Construct _ ) -> let vars = Environ.vars_of_global (Global.env()) c in List.iter check vars; c | Var id' -> check id'; mkVar id' | Evar (e,l) -> if Evd.is_defined_evar !evd (e,l) then (* If e is already defined we replace it by its definition *) let nc = nf_evar (evars_of !evd) c in (check_and_clear_in_constr evd nc ids) else (* We check for dependencies to elements of ids in the evar_info corresponding to e and in the instance of arguments. Concurrently, we build a new evar corresponding to e where hypotheses of ids have been removed *) let evi = Evd.find (evars_of !evd) e in let nconcl = check_and_clear_in_constr evd (evar_concl evi) ids in let (nhyps,nargs) = List.fold_right2 (fun (id,ob,c) i (hy,ar) -> if List.mem id ids then (hy,ar) else let d' = (id, (match ob with None -> None | Some b -> Some (check_and_clear_in_constr evd b ids)), check_and_clear_in_constr evd c ids) in let i' = check_and_clear_in_constr evd i ids in (d'::hy, i'::ar) ) (evar_context evi) (Array.to_list l) ([],[]) in let env = Sign.fold_named_context push_named nhyps ~init:(empty_env) in let ev'= e_new_evar evd env ~src:(evar_source e !evd) nconcl in evd := Evd.evar_define e ev' !evd; let (e',_) = destEvar ev' in mkEvar(e', Array.of_list nargs) | _ -> map_constr (fun c -> check_and_clear_in_constr evd c ids) c and clear_hyps_in_evi evd evi ids = (* clear_evar_hyps erases hypotheses ids in evi, checking if some hypothesis does not depend on a element of ids, and erases ids in the contexts of the evars occuring in evi *) let nconcl = try check_and_clear_in_constr evd (evar_concl evi) ids with Dependency_error id' -> error (string_of_id id' ^ " is used in conclusion") in let (nhyps,_) = let aux (id,ob,c) = try (id, (match ob with None -> None | Some b -> Some (check_and_clear_in_constr evd b ids)), check_and_clear_in_constr evd c ids) with Dependency_error id' -> error (string_of_id id' ^ " is used in hypothesis " ^ string_of_id id) in remove_hyps ids aux (evar_hyps evi) in { evi with evar_concl = nconcl; evar_hyps = nhyps} let need_restriction k args = not (array_for_all (closedn k) args) (* We try to instantiate the evar assuming the body won't depend * on arguments that are not Rels or Vars, or appearing several times * (i.e. we tackle only Miller-Pfenning patterns unification) * 1) Let a unification problem "env |- ev[hyps:=args] = rhs" * 2) We limit it to a patterns unification problem "env |- ev[subst] = rhs" * where only Rel's and Var's are relevant in subst * 3) We recur on rhs, "imitating" the term failing if some Rel/Var not in scope * Note: we don't assume rhs in normal form, it may fail while it would * have succeeded after some reductions *) (* Note: error_not_clean should not be an error: it simply means that the * conversion test that lead to the faulty call to [real_clean] should return * false. The problem is that we won't get the right error message. *) exception NotClean of constr let real_clean env isevars ev evi args rhs = let evd = ref isevars in let subst = List.map (fun (x,y) -> (y,mkVar x)) (list_uniquize args) in let rec subs rigid k t = match kind_of_term t with | Rel i -> if i<=k then t else (* Flex/Rel problem: unifiable as a pattern iff Rel in ev scope *) (try List.assoc (mkRel (i-k)) subst with Not_found -> if rigid then raise (NotClean t) else t) | Evar (ev,args) -> if Evd.is_defined_evar !evd (ev,args) then subs rigid k (existential_value (evars_of !evd) (ev,args)) else (* Flex/Flex problem: restriction to a common scope *) let args' = Array.map (subs false k) args in if need_restriction k args' then do_restrict_hyps (reset_context env) k evd ev args' else mkEvar (ev,args') | Var id -> (* Flex/Var problem: unifiable as a pattern iff Var in scope of ev *) (try List.assoc t subst with Not_found -> if not rigid (* I don't understand this line: vars from evar_context evi are private (especially some of them are freshly generated in push_rel_context_to_named_context). They have a priori nothing to do with the vars in env. I remove the test [HH 25/8/06] or List.exists (fun (id',_,_) -> id=id') (evar_context evi) *) then t else raise (NotClean t)) | _ -> (* Flex/Rigid problem (or assimilated if not normal): we "imitate" *) map_constr_with_binders succ (subs rigid) k t in let rhs = nf_evar (evars_of isevars) rhs in let rhs = whd_beta rhs (* heuristic *) in let body = try subs true 0 rhs with NotClean t -> error_not_clean env (evars_of !evd) ev t (evar_source ev !evd) in (!evd,body) (* [evar_define] solves the problem lhs = rhs when lhs is an uninstantiated * evar, i.e. tries to find the body ?sp for lhs=mkEvar (sp,args) * ?sp [ sp.hyps \ args ] unifies to rhs * ?sp must be a closed term, not referring to itself. * Not so trivial because some terms of args may be terms that are not * variables. In this case, the non-var-or-Rels arguments are replaced * by . [clean_rhs] will ignore this part of the subtitution. * This leads to incompleteness (we don't deal with pbs that require * inference of dependent types), but it seems sensible. * * If after cleaning, some free vars still occur, the function [restrict_hyps] * tries to narrow the env of the evars that depend on Rels. * * If after that free Rels still occur it means that the instantiation * cannot be done, as in [x:?1; y:nat; z:(le y y)] x=z * ?1 would be instantiated by (le y y) but y is not in the scope of ?1 *) (* env needed for error messages... *) let evar_define env (ev,argsv) rhs isevars = if occur_evar ev rhs then error_occur_check env (evars_of isevars) ev rhs; let args = Array.to_list argsv in let evi = Evd.find (evars_of isevars) ev in (* the bindings to invert *) let worklist = make_subst (evar_env evi) args in let (isevars',body) = real_clean env isevars ev evi worklist rhs in if occur_meta body then error "Meta cannot occur in evar body" else (* needed only if an inferred type *) let body = refresh_universes body in (* Cannot strictly type instantiations since the unification algorithm * does not unifies applications from left to right. * e.g problem f x == g y yields x==y and f==g (in that order) * Another problem is that type variables are evars of type Type let _ = try let env = evar_env evi in let ty = evi.evar_concl in Typing.check env (evars_of isevars') body ty with e -> pperrnl (str "Ill-typed evar instantiation: " ++ fnl() ++ pr_evar_defs isevars' ++ fnl() ++ str "----> " ++ int ev ++ str " := " ++ print_constr body); raise e in*) let isevars'' = Evd.evar_define ev body isevars' in isevars'',[ev] (*-------------------*) (* Auxiliary functions for the conversion algorithms modulo evars *) let has_undefined_evars isevars t = try let _ = local_strong (whd_ise (evars_of isevars)) t in false with Uninstantiated_evar _ -> true let is_ground_term isevars t = not (has_undefined_evars isevars t) let head_is_evar isevars = let rec hrec k = match kind_of_term k with | Evar n -> not (Evd.is_defined_evar isevars n) | App (f,_) -> hrec f | Cast (c,_,_) -> hrec c | _ -> false in hrec let rec is_eliminator c = match kind_of_term c with | App _ -> true | Case _ -> true | Cast (c,_,_) -> is_eliminator c | _ -> false let head_is_embedded_evar isevars c = (head_is_evar isevars c) & (is_eliminator c) let head_evar = let rec hrec c = match kind_of_term c with | Evar (ev,_) -> ev | Case (_,_,c,_) -> hrec c | App (c,_) -> hrec c | Cast (c,_,_) -> hrec c | _ -> failwith "headconstant" in hrec (* Check if an applied evar "?X[args] l" is a Miller's pattern; note that we don't care whether args itself contains Rel's or even Rel's distinct from the ones in l *) let is_unification_pattern_evar (_,args) l = let l' = Array.to_list args @ l in List.for_all (fun a -> isRel a or isVar a) l' & list_distinct l' let is_unification_pattern f l = match kind_of_term f with | Meta _ -> array_for_all isRel l & array_distinct l | Evar ev -> is_unification_pattern_evar ev (Array.to_list l) | _ -> false (* From a unification problem "?X l1 = term1 l2" such that l1 is made of distinct rel's, build "\x1...xn.(term1 l2)" (patterns unification) *) let solve_pattern_eqn env l1 c = let c' = List.fold_right (fun a c -> let c' = subst_term (lift 1 a) (lift 1 c) in match kind_of_term a with (* Rem: if [a] links to a let-in, do as if it were an assumption *) | Rel n -> let (na,_,t) = lookup_rel n env in mkLambda (na,lift n t,c') | Var id -> let (id,_,t) = lookup_named id env in mkNamedLambda id t c' | _ -> assert false) l1 c in whd_eta c' (* This code (i.e. solve_pb, etc.) takes a unification * problem, and tries to solve it. If it solves it, then it removes * all the conversion problems, and re-runs conversion on each one, in * the hopes that the new solution will aid in solving them. * * The kinds of problems it knows how to solve are those in which * the usable arguments of an existential var are all themselves * universal variables. * The solution to this problem is to do renaming for the Var's, * to make them match up with the Var's which are found in the * hyps of the existential, to do a "pop" for each Rel which is * not an argument of the existential, and a subst1 for each which * is, again, with the corresponding variable. This is done by * evar_define * * Thus, we take the arguments of the existential which we are about * to assign, and zip them with the identifiers in the hypotheses. * Then, we process all the Var's in the arguments, and sort the * Rel's into ascending order. Then, we just march up, doing * subst1's and pop's. * * NOTE: We can do this more efficiently for the relative arguments, * by building a long substituend by hand, but this is a pain in the * ass. *) let status_changed lev (pbty,_,t1,t2) = try List.mem (head_evar t1) lev or List.mem (head_evar t2) lev with Failure _ -> try List.mem (head_evar t2) lev with Failure _ -> false (* Solve pbs (?i x1..xn) = (?i y1..yn) which arises often in fixpoint * definitions. We try to unify the xi with the yi pairwise. The pairs * that don't unify are discarded (i.e. ?i is redefined so that it does not * depend on these args). *) let solve_refl conv_algo env isevars ev argsv1 argsv2 = if argsv1 = argsv2 then (isevars,[]) else let evd = Evd.find (evars_of isevars) ev in let hyps = evar_context evd in let (isevars',_,rsign) = array_fold_left2 (fun (isevars,sgn,rsgn) a1 a2 -> let (isevars',b) = conv_algo env isevars Reduction.CONV a1 a2 in if b then (isevars',List.tl sgn, add_named_decl (List.hd sgn) rsgn) else (isevars,List.tl sgn, rsgn)) (isevars,hyps,[]) argsv1 argsv2 in let nsign = List.rev rsign in let (evd',newev) = let env = Sign.fold_named_context push_named nsign ~init:(reset_context env) in new_evar isevars env ~src:(evar_source ev isevars) evd.evar_concl in let evd'' = Evd.evar_define ev newev evd' in evd'', [ev] (* Tries to solve problem t1 = t2. * Precondition: t1 is an uninstantiated evar * Returns an optional list of evars that were instantiated, or None * if the problem couldn't be solved. *) (* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *) let solve_simple_eqn conv_algo env isevars (pbty,(n1,args1 as ev1),t2) = try let t2 = nf_evar (evars_of isevars) t2 in let (isevars,lsp) = match kind_of_term t2 with | Evar (n2,args2 as ev2) -> if n1 = n2 then solve_refl conv_algo env isevars n1 args1 args2 else (try evar_define env ev1 t2 isevars with e when precatchable_exception e -> evar_define env ev2 (mkEvar ev1) isevars) (* if Array.length args1 < Array.length args2 then evar_define env ev2 (mkEvar ev1) isevars else evar_define env ev1 t2 isevars*) | _ -> evar_define env ev1 t2 isevars in let (isevars,pbs) = get_conv_pbs isevars (status_changed lsp) in List.fold_left (fun (isevars,b as p) (pbty,env,t1,t2) -> if b then conv_algo env isevars pbty t1 t2 else p) (isevars,true) pbs with e when precatchable_exception e -> (isevars,false) (* [check_evars] fails if some unresolved evar remains *) (* it assumes that the defined existentials have already been substituted *) let check_evars env initial_sigma isevars c = let sigma = evars_of isevars in let c = nf_evar sigma c in let rec proc_rec c = match kind_of_term c with | Evar (ev,args) -> assert (Evd.mem sigma ev); if not (Evd.mem initial_sigma ev) then let (loc,k) = evar_source ev isevars in error_unsolvable_implicit loc env sigma k | _ -> iter_constr proc_rec c in proc_rec c (* Operations on value/type constraints *) type type_constraint_type = (int * int) option * constr type type_constraint = type_constraint_type option type val_constraint = constr option (* Old comment... * Basically, we have the following kind of constraints (in increasing * strength order): * (false,(None,None)) -> no constraint at all * (true,(None,None)) -> we must build a judgement which _TYPE is a kind * (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty * (_,(Some v,_)) -> we must build a judgement which _VAL is v * Maybe a concrete datatype would be easier to understand. * We differentiate (true,(None,None)) from (_,(None,Some Type)) * because otherwise Case(s) would be misled, as in * (n:nat) Case n of bool [_]nat end would infer the predicate Type instead * of Set. *) (* The empty type constraint *) let empty_tycon = None let mk_tycon_type c = (None, c) let mk_abstr_tycon_type n c = (Some (n, n), c) (* First component is initial abstraction, second is current abstraction *) (* Builds a type constraint *) let mk_tycon ty = Some (mk_tycon_type ty) let mk_abstr_tycon n ty = Some (mk_abstr_tycon_type n ty) (* Constrains the value of a type *) let empty_valcon = None (* Builds a value constraint *) let mk_valcon c = Some c (* Refining an evar to a product or a sort *) (* Declaring any type to be in the sort Type shouldn't be harmful since cumulativity now includes Prop and Set in Type... It is, but that's not too bad *) let define_evar_as_abstraction abs evd (ev,args) = let evi = Evd.find (evars_of evd) ev in let evenv = evar_env evi in let (evd1,dom) = new_evar evd evenv (new_Type()) in let nvar = next_ident_away (id_of_string "x") (ids_of_named_context (evar_context evi)) in let newenv = push_named (nvar, None, dom) evenv in let (evd2,rng) = new_evar evd1 newenv ~src:(evar_source ev evd1) (new_Type()) in let prod = abs (Name nvar, dom, subst_var nvar rng) in let evd3 = Evd.evar_define ev prod evd2 in let evdom = fst (destEvar dom), args in let evrng = fst (destEvar rng), array_cons (mkRel 1) (Array.map (lift 1) args) in let prod' = abs (Name nvar, mkEvar evdom, mkEvar evrng) in (evd3,prod') let define_evar_as_arrow evd (ev,args) = define_evar_as_abstraction (fun t -> mkProd t) evd (ev,args) let define_evar_as_lambda evd (ev,args) = define_evar_as_abstraction (fun t -> mkLambda t) evd (ev,args) let define_evar_as_sort isevars (ev,args) = let s = new_Type () in Evd.evar_define ev s isevars, destSort s (* We don't try to guess in which sort the type should be defined, since any type has type Type. May cause some trouble, but not so far... *) let judge_of_new_Type () = Typeops.judge_of_type (new_univ ()) (* Propagation of constraints through application and abstraction: Given a type constraint on a functional term, returns the type constraint on its domain and codomain. If the input constraint is an evar instantiate it with the product of 2 new evars. *) let split_tycon loc env isevars tycon = let rec real_split c = let sigma = evars_of isevars in let t = whd_betadeltaiota env sigma c in match kind_of_term t with | Prod (na,dom,rng) -> isevars, (na, dom, rng) | Evar ev when not (Evd.is_defined_evar isevars ev) -> let (isevars',prod) = define_evar_as_arrow isevars ev in let (_,dom,rng) = destProd prod in isevars',(Anonymous, dom, rng) | _ -> error_not_product_loc loc env sigma c in match tycon with | None -> isevars,(Anonymous,None,None) | Some (abs, c) -> (match abs with None -> let isevars', (n, dom, rng) = real_split c in isevars', (n, mk_tycon dom, mk_tycon rng) | Some (init, cur) -> if cur = 0 then let isevars', (x, dom, rng) = real_split c in isevars, (Anonymous, Some (Some (init, 0), dom), Some (Some (init, 0), rng)) else isevars, (Anonymous, None, Some (Some (init, pred cur), c))) let valcon_of_tycon x = match x with | Some (None, t) -> Some t | _ -> None let lift_abstr_tycon_type n (abs, t) = match abs with None -> raise (Invalid_argument "lift_abstr_tycon_type: not an abstraction") | Some (init, abs) -> let abs' = abs + n in if abs' < 0 then raise (Invalid_argument "lift_abstr_tycon_type") else (Some (init, abs'), t) let lift_tycon_type n (abs, t) = (abs, lift n t) let lift_tycon n = option_map (lift_tycon_type n) let pr_tycon_type env (abs, t) = match abs with None -> Termops.print_constr_env env t | Some (init, cur) -> str "Abstract (" ++ int init ++ str "," ++ int cur ++ str ") " ++ Termops.print_constr_env env t let pr_tycon env = function None -> str "None" | Some t -> pr_tycon_type env t