(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* MaybeFlexible c | Rel n -> MaybeFlexible c | Var id -> MaybeFlexible c | Lambda _ when l<>[] -> MaybeFlexible c | LetIn _ -> MaybeFlexible c | Evar ev -> Flexible ev | _ -> Rigid c let eval_flexible_term env c = match kind_of_term c with | Const c -> constant_opt_value env c | Rel n -> (try let (_,v,_) = lookup_rel n env in Option.map (lift n) v with Not_found -> None) | Var id -> (try let (_,v,_) = lookup_named id env in v with Not_found -> None) | LetIn (_,b,_,c) -> Some (subst1 b c) | Lambda _ -> Some c | _ -> assert false let evar_apprec env evd stack c = let sigma = evars_of evd in let rec aux s = let (t,stack) = whd_betaiota_deltazeta_for_iota_state env sigma s in match kind_of_term t with | Evar (evk,_ as ev) when Evd.is_defined sigma evk -> aux (Evd.existential_value sigma ev, stack) | _ -> (t, list_of_stack stack) in aux (c, append_stack_list stack empty_stack) let apprec_nohdbeta env evd c = match kind_of_term (fst (Reductionops.whd_stack c)) with | (Case _ | Fix _) -> applist (evar_apprec env evd [] c) | _ -> c (* [check_conv_record (t1,l1) (t2,l2)] tries to decompose the problem (t1 l1) = (t2 l2) into a problem l1 = params1@c1::extra_args1 l2 = us2@extra_args2 (t1 params1 c1) = (proji params (c xs)) (t2 us2) = (cstr us) extra_args1 = extra_args2 by finding a record R and an object c := [xs:bs](Build_R params v1..vn) with vi = (cstr us), for which we know that the i-th projection proji satisfies (proji params (c xs)) = (cstr us) Rem: such objects, usable for conversion, are defined in the objdef table; practically, it amounts to "canonically" equip t2 into a object c in structure R (since, if c1 were not an evar, the projection would have been reduced) *) let check_conv_record (t1,l1) (t2,l2) = try let proji = global_of_constr t1 in let canon_s,l2_effective = try match kind_of_term t2 with Prod (_,a,b) -> (* assert (l2=[]); *) if dependent (mkRel 1) b then raise Not_found else lookup_canonical_conversion (proji, Prod_cs),[a;pop b] | Sort s -> lookup_canonical_conversion (proji, Sort_cs (family_of_sort s)),[] | _ -> let c2 = global_of_constr t2 in lookup_canonical_conversion (proji, Const_cs c2),l2 with Not_found -> lookup_canonical_conversion (proji,Default_cs),[] in let { o_DEF = c; o_INJ=n; o_TABS = bs; o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in let params1, c1, extra_args1 = match list_chop nparams l1 with | params1, c1::extra_args1 -> params1, c1, extra_args1 | _ -> raise Not_found in let us2,extra_args2 = list_chop (List.length us) l2_effective in c,bs,(params,params1),(us,us2),(extra_args1,extra_args2),c1, (n,applist(t2,l2)) with Failure _ | Not_found -> raise Not_found (* Precondition: one of the terms of the pb is an uninstantiated evar, * possibly applied to arguments. *) let rec ise_try evd = function [] -> assert false | [f] -> f evd | f1::l -> let (evd',b) = f1 evd in if b then (evd',b) else ise_try evd l let ise_and evd l = let rec ise_and i = function [] -> assert false | [f] -> f i | f1::l -> let (i',b) = f1 i in if b then ise_and i' l else (evd,false) in ise_and evd l let ise_list2 evd f l1 l2 = let rec ise_list2 i l1 l2 = match l1,l2 with [], [] -> (i, true) | [x], [y] -> f i x y | x::l1, y::l2 -> let (i',b) = f i x y in if b then ise_list2 i' l1 l2 else (evd,false) | _ -> (evd, false) in ise_list2 evd l1 l2 let ise_array2 evd f v1 v2 = let rec allrec i = function | -1 -> (i,true) | n -> let (i',b) = f i v1.(n) v2.(n) in if b then allrec i' (n-1) else (evd,false) in let lv1 = Array.length v1 in if lv1 = Array.length v2 then allrec evd (pred lv1) else (evd,false) let rec evar_conv_x env evd pbty term1 term2 = let sigma = evars_of evd in let term1 = whd_castappevar sigma term1 in let term2 = whd_castappevar sigma term2 in (* Maybe convertible but since reducing can erase evars which [evar_apprec] could have found, we do it only if the terms are free of evar. Note: incomplete heuristic... *) if is_ground_term evd term1 && is_ground_term evd term2 & is_fconv pbty env (evars_of evd) term1 term2 then (evd,true) else let term1 = apprec_nohdbeta env evd term1 in let term2 = apprec_nohdbeta env evd term2 in if is_undefined_evar evd term1 then solve_simple_eqn evar_conv_x env evd (pbty,destEvar term1,term2) else if is_undefined_evar evd term2 then solve_simple_eqn evar_conv_x env evd (pbty,destEvar term2,term1) else evar_eqappr_x env evd pbty (decompose_app term1) (decompose_app term2) and evar_eqappr_x env evd pbty (term1,l1 as appr1) (term2,l2 as appr2) = (* Evar must be undefined since we have whd_ised *) match (flex_kind_of_term term1 l1, flex_kind_of_term term2 l2) with | Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) -> let f1 i = if List.length l1 > List.length l2 then let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in ise_and i [(fun i -> solve_simple_eqn evar_conv_x env i (pbty,ev2,applist(term1,deb1))); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) rest1 l2)] else let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in ise_and i [(fun i -> solve_simple_eqn evar_conv_x env i (pbty,ev1,applist(term2,deb2))); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 rest2)] and f2 i = if sp1 = sp2 then ise_and i [(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2); (fun i -> solve_refl evar_conv_x env i sp1 al1 al2, true)] else (i,false) in ise_try evd [f1; f2] | Flexible ev1, MaybeFlexible flex2 -> let f1 i = if is_unification_pattern_evar env ev1 l1 & not (occur_evar (fst ev1) (applist appr2)) then (* Miller-Pfenning's patterns unification *) (* Preserve generality (except that CCI has no eta-conversion) *) let t2 = nf_evar (evars_of evd) (applist appr2) in let t2 = solve_pattern_eqn env l1 t2 in solve_simple_eqn evar_conv_x env evd (pbty,ev1,t2) else if List.length l1 <= List.length l2 then (* Try first-order unification *) (* (heuristic that gives acceptable results in practice) *) let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in ise_and i (* First compare extra args for better failure message *) [(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 rest2); (fun i -> evar_conv_x env i pbty term1 (applist(term2,deb2)))] else (i,false) and f4 i = match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2) | None -> (i,false) in ise_try evd [f1; f4] | MaybeFlexible flex1, Flexible ev2 -> let f1 i = if is_unification_pattern_evar env ev2 l2 & not (occur_evar (fst ev2) (applist appr1)) then (* Miller-Pfenning's patterns unification *) (* Preserve generality (except that CCI has no eta-conversion) *) let t1 = nf_evar (evars_of evd) (applist appr1) in let t1 = solve_pattern_eqn env l2 t1 in solve_simple_eqn evar_conv_x env evd (pbty,ev2,t1) else if List.length l2 <= List.length l1 then (* Try first-order unification *) (* (heuristic that gives acceptable results in practice) *) let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in ise_and i (* First compare extra args for better failure message *) [(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) rest1 l2); (fun i -> evar_conv_x env i pbty (applist(term1,deb1)) term2)] else (i,false) and f4 i = match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2 | None -> (i,false) in ise_try evd [f1; f4] | MaybeFlexible flex1, MaybeFlexible flex2 -> let f1 i = if flex1 = flex2 then ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2 else (i,false) and f2 i = (try conv_record env i (try check_conv_record appr1 appr2 with Not_found -> check_conv_record appr2 appr1) with Not_found -> (i,false)) and f3 i = (* heuristic: unfold second argument first, exception made if the first argument is a beta-redex (expand a constant only if necessary) or the second argument is potentially usable as a canonical projection *) if isLambda flex1 or is_open_canonical_projection (evars_of i) appr2 then match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2 | None -> match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2) | None -> (i,false) else match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2) | None -> match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2 | None -> (i,false) in ise_try evd [f1; f2; f3] | Flexible ev1, Rigid _ -> if is_unification_pattern_evar env ev1 l1 & not (occur_evar (fst ev1) (applist appr2)) then (* Miller-Pfenning's patterns unification *) (* Preserve generality (except that CCI has no eta-conversion) *) let t2 = nf_evar (evars_of evd) (applist appr2) in let t2 = solve_pattern_eqn env l1 t2 in solve_simple_eqn evar_conv_x env evd (pbty,ev1,t2) else (* Postpone the use of an heuristic *) add_conv_pb (pbty,env,applist appr1,applist appr2) evd, true | Rigid _, Flexible ev2 -> if is_unification_pattern_evar env ev2 l2 & not (occur_evar (fst ev2) (applist appr1)) then (* Miller-Pfenning's patterns unification *) (* Preserve generality (except that CCI has no eta-conversion) *) let t1 = nf_evar (evars_of evd) (applist appr1) in let t1 = solve_pattern_eqn env l2 t1 in solve_simple_eqn evar_conv_x env evd (pbty,ev2,t1) else (* Postpone the use of an heuristic *) add_conv_pb (pbty,env,applist appr1,applist appr2) evd, true | MaybeFlexible flex1, Rigid _ -> let f3 i = (try conv_record env i (check_conv_record appr1 appr2) with Not_found -> (i,false)) and f4 i = match eval_flexible_term env flex1 with | Some v1 -> evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2 | None -> (i,false) in ise_try evd [f3; f4] | Rigid _ , MaybeFlexible flex2 -> let f3 i = (try conv_record env i (check_conv_record appr2 appr1) with Not_found -> (i,false)) and f4 i = match eval_flexible_term env flex2 with | Some v2 -> evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2) | None -> (i,false) in ise_try evd [f3; f4] | Rigid c1, Rigid c2 -> match kind_of_term c1, kind_of_term c2 with | Cast (c1,_,_), _ -> evar_eqappr_x env evd pbty (c1,l1) appr2 | _, Cast (c2,_,_) -> evar_eqappr_x env evd pbty appr1 (c2,l2) | Sort s1, Sort s2 when l1=[] & l2=[] -> (evd,base_sort_cmp pbty s1 s2) | Lambda (na,c1,c'1), Lambda (_,c2,c'2) when l1=[] & l2=[] -> ise_and evd [(fun i -> evar_conv_x env i CONV c1 c2); (fun i -> let c = nf_evar (evars_of i) c1 in evar_conv_x (push_rel (na,None,c) env) i CONV c'1 c'2)] | LetIn (na,b1,t1,c'1), LetIn (_,b2,_,c'2) -> let f1 i = ise_and i [(fun i -> evar_conv_x env i CONV b1 b2); (fun i -> let b = nf_evar (evars_of i) b1 in let t = nf_evar (evars_of i) t1 in evar_conv_x (push_rel (na,Some b,t) env) i pbty c'1 c'2); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2)] and f2 i = let appr1 = evar_apprec env i l1 (subst1 b1 c'1) and appr2 = evar_apprec env i l2 (subst1 b2 c'2) in evar_eqappr_x env i pbty appr1 appr2 in ise_try evd [f1; f2] | LetIn (_,b1,_,c'1), _ ->(* On fait commuter les args avec le Let *) let appr1 = evar_apprec env evd l1 (subst1 b1 c'1) in evar_eqappr_x env evd pbty appr1 appr2 | _, LetIn (_,b2,_,c'2) -> let appr2 = evar_apprec env evd l2 (subst1 b2 c'2) in evar_eqappr_x env evd pbty appr1 appr2 | Prod (n,c1,c'1), Prod (_,c2,c'2) when l1=[] & l2=[] -> ise_and evd [(fun i -> evar_conv_x env i CONV c1 c2); (fun i -> let c = nf_evar (evars_of i) c1 in evar_conv_x (push_rel (n,None,c) env) i pbty c'1 c'2)] | Ind sp1, Ind sp2 -> if sp1=sp2 then ise_list2 evd (fun i -> evar_conv_x env i CONV) l1 l2 else (evd, false) | Construct sp1, Construct sp2 -> if sp1=sp2 then ise_list2 evd (fun i -> evar_conv_x env i CONV) l1 l2 else (evd, false) | Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) -> ise_and evd [(fun i -> evar_conv_x env i CONV p1 p2); (fun i -> evar_conv_x env i CONV c1 c2); (fun i -> ise_array2 i (fun i -> evar_conv_x env i CONV) cl1 cl2); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2)] | Fix (li1,(_,tys1,bds1 as recdef1)), Fix (li2,(_,tys2,bds2)) -> if li1=li2 then ise_and evd [(fun i -> ise_array2 i (fun i -> evar_conv_x env i CONV) tys1 tys2); (fun i -> ise_array2 i (fun i -> evar_conv_x (push_rec_types recdef1 env) i CONV) bds1 bds2); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2)] else (evd,false) | CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) -> if i1=i2 then ise_and evd [(fun i -> ise_array2 i (fun i -> evar_conv_x env i CONV) tys1 tys2); (fun i -> ise_array2 i (fun i -> evar_conv_x (push_rec_types recdef1 env) i CONV) bds1 bds2); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2)] else (evd,false) | (Meta _ | Lambda _), _ -> (evd,false) | _, (Meta _ | Lambda _) -> (evd,false) | (Ind _ | Construct _ | Sort _ | Prod _), _ -> (evd,false) | _, (Ind _ | Construct _ | Sort _ | Prod _) -> (evd,false) | (App _ | Case _ | Fix _ | CoFix _), (App _ | Case _ | Fix _ | CoFix _) -> (evd,false) | (Rel _ | Var _ | Const _ | Evar _), _ -> assert false | _, (Rel _ | Var _ | Const _ | Evar _) -> assert false and conv_record env evd (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) = let (evd',ks,_) = List.fold_left (fun (i,ks,m) b -> if m=0 then (i,t2::ks, n-1) else let dloc = (dummy_loc,InternalHole) in let (i',ev) = new_evar i env ~src:dloc (substl ks b) in (i', ev :: ks, n - 1)) (evd,[],n) bs in ise_and evd' [(fun i -> ise_list2 i (fun i u1 u -> evar_conv_x env i CONV u1 (substl ks u)) us2 us); (fun i -> ise_list2 i (fun i x1 x -> evar_conv_x env i CONV x1 (substl ks x)) params1 params); (fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) ts ts1); (fun i -> evar_conv_x env i CONV c1 (applist (c,(List.rev ks))))] (* We assume here |l1| <= |l2| *) let first_order_unification env evd (ev1,l1) (term2,l2) = let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in ise_and evd (* First compare extra args for better failure message *) [(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) rest2 l1); (fun i -> (* Then instantiate evar unless already done by unifying args *) let t2 = applist(term2,deb2) in if is_defined_evar i ev1 then evar_conv_x env i CONV t2 (mkEvar ev1) else solve_simple_eqn evar_conv_x env i (CONV,ev1,t2))] let choose_less_dependent_instance evk evd term args = let evi = Evd.find (evars_of evd) evk in let subst = make_pure_subst evi args in let subst' = List.filter (fun (id,c) -> c = term) subst in if subst' = [] then error "Too complex unification problem." else Evd.evar_define evk (mkVar (fst (List.hd subst'))) evd let apply_conversion_problem_heuristic env evd pbty t1 t2 = let t1 = apprec_nohdbeta env evd (whd_castappevar (evars_of evd) t1) in let t2 = apprec_nohdbeta env evd (whd_castappevar (evars_of evd) t2) in let (term1,l1 as appr1) = decompose_app t1 in let (term2,l2 as appr2) = decompose_app t2 in match kind_of_term term1, kind_of_term term2 with | Evar (evk1,args1), (Rel _|Var _) when l1 = [] & l2 = [] -> (* The typical kind of constraint coming from pattern-matching return type inference *) assert (array_for_all (fun a -> a = term2 or isEvar a) args1); choose_less_dependent_instance evk1 evd term2 args1, true | (Rel _|Var _), Evar (evk2,args2) when l1 = [] & l2 = [] -> (* The typical kind of constraint coming from pattern-matching return type inference *) assert (array_for_all ((=) term1) args2); choose_less_dependent_instance evk2 evd term1 args2, true | Evar ev1,_ when List.length l1 <= List.length l2 -> (* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *) first_order_unification env evd (ev1,l1) appr2 | _,Evar ev2 when List.length l2 <= List.length l1 -> (* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *) first_order_unification env evd (ev2,l2) appr1 | _ -> (* Some head evar have been instantiated, or unknown kind of problem *) evar_conv_x env evd pbty t1 t2 let consider_remaining_unif_problems env evd = let (evd,pbs) = extract_all_conv_pbs evd in List.fold_left (fun (evd,b as p) (pbty,env,t1,t2) -> if b then apply_conversion_problem_heuristic env evd pbty t1 t2 else p) (evd,true) pbs (* Main entry points *) let the_conv_x env t1 t2 evd = match evar_conv_x env evd CONV t1 t2 with (evd',true) -> evd' | _ -> raise Reduction.NotConvertible let the_conv_x_leq env t1 t2 evd = match evar_conv_x env evd CUMUL t1 t2 with (evd', true) -> evd' | _ -> raise Reduction.NotConvertible let e_conv env evd t1 t2 = match evar_conv_x env !evd CONV t1 t2 with (evd',true) -> evd := evd'; true | _ -> false let e_cumul env evd t1 t2 = match evar_conv_x env !evd CUMUL t1 t2 with (evd',true) -> evd := evd'; true | _ -> false