(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* let () = if Id.Map.mem n names then warn_bound_meta n in (names, Id.Map.add n x terms) let add_binders na1 na2 binding_vars (names, terms as subst) = match na1, na2 with | Name id1, Name id2 when Id.Set.mem id1 binding_vars -> if Id.Map.mem id1 names then let () = warn_bound_bound id1 in (names, terms) else let names = Id.Map.add id1 id2 names in let () = if Id.Map.mem id1 terms then warn_bound_meta id1 in (names, terms) | _ -> subst let rec build_lambda vars ctx m = match vars with | [] -> let len = List.length ctx in lift (-1 * len) m | n :: vars -> (* change [ x1 ... xn y z1 ... zm |- t ] into [ x1 ... xn z1 ... zm |- lam y. t ] *) let len = List.length ctx in let init i = if i < pred n then mkRel (i + 2) else if Int.equal i (pred n) then mkRel 1 else mkRel (i + 1) in let m = substl (List.init len init) m in let pre, suf = List.chop (pred n) ctx in match suf with | [] -> assert false | (_, na, t) :: suf -> let map i = if i > n then pred i else i in let vars = List.map map vars in (** Check that the abstraction is legal *) let frels = free_rels t in let brels = List.fold_right Int.Set.add vars Int.Set.empty in let () = if not (Int.Set.subset frels brels) then raise PatternMatchingFailure in (** Create the abstraction *) let m = mkLambda (na, t, m) in build_lambda vars (pre @ suf) m let rec extract_bound_aux k accu frels ctx = match ctx with | [] -> accu | (na1, na2, _) :: ctx -> if Int.Set.mem k frels then begin match na1 with | Name id -> let () = assert (match na2 with Anonymous -> false | Name _ -> true) in let () = if Id.Set.mem id accu then raise PatternMatchingFailure in extract_bound_aux (k + 1) (Id.Set.add id accu) frels ctx | Anonymous -> raise PatternMatchingFailure end else extract_bound_aux (k + 1) accu frels ctx let extract_bound_vars frels ctx = extract_bound_aux 1 Id.Set.empty frels ctx let dummy_constr = mkProp let make_renaming ids = function | (Name id, Name _, _) -> begin try mkRel (List.index Id.equal id ids) with Not_found -> dummy_constr end | _ -> dummy_constr let merge_binding allow_bound_rels ctx n cT subst = let c = match ctx with | [] -> (* Optimization *) ([], cT) | _ -> let frels = free_rels cT in if allow_bound_rels then let vars = extract_bound_vars frels ctx in let ordered_vars = Id.Set.elements vars in let rename binding = make_renaming ordered_vars binding in let renaming = List.map rename ctx in (ordered_vars, substl renaming cT) else let depth = List.length ctx in let min_elt = try Int.Set.min_elt frels with Not_found -> succ depth in if depth < min_elt then ([], lift (- depth) cT) else raise PatternMatchingFailure in constrain n c subst let matches_core env sigma convert allow_partial_app allow_bound_rels (binding_vars,pat) c = let convref ref c = match ref, kind_of_term c with | VarRef id, Var id' -> Names.id_eq id id' | ConstRef c, Const (c',_) -> Names.eq_constant c c' | IndRef i, Ind (i', _) -> Names.eq_ind i i' | ConstructRef c, Construct (c',u) -> Names.eq_constructor c c' | _, _ -> (if convert then let sigma,c' = Evd.fresh_global env sigma ref in is_conv env sigma c' c else false) in let rec sorec ctx env subst p t = let cT = strip_outer_cast t in match p,kind_of_term cT with | PSoApp (n,args),m -> let fold (ans, seen) = function | PRel n -> let () = if Int.Set.mem n seen then error "Non linear second-order pattern" in (n :: ans, Int.Set.add n seen) | _ -> error "Only bound indices allowed in second order pattern matching." in let relargs, relset = List.fold_left fold ([], Int.Set.empty) args in let frels = free_rels cT in if Int.Set.subset frels relset then constrain n ([], build_lambda relargs ctx cT) subst else raise PatternMatchingFailure | PMeta (Some n), m -> merge_binding allow_bound_rels ctx n cT subst | PMeta None, m -> subst | PRef (VarRef v1), Var v2 when Id.equal v1 v2 -> subst | PVar v1, Var v2 when Id.equal v1 v2 -> subst | PRef ref, _ when convref ref cT -> subst | PRel n1, Rel n2 when Int.equal n1 n2 -> subst | PSort GProp, Sort (Prop Null) -> subst | PSort GSet, Sort (Prop Pos) -> subst | PSort (GType _), Sort (Type _) -> subst | PApp (p, [||]), _ -> sorec ctx env subst p t | PApp (PApp (h, a1), a2), _ -> sorec ctx env subst (PApp(h,Array.append a1 a2)) t | PApp (PMeta meta,args1), App (c2,args2) when allow_partial_app -> (let diff = Array.length args2 - Array.length args1 in if diff >= 0 then let args21, args22 = Array.chop diff args2 in let c = mkApp(c2,args21) in let subst = match meta with | None -> subst | Some n -> merge_binding allow_bound_rels ctx n c subst in Array.fold_left2 (sorec ctx env) subst args1 args22 else (* Might be a projection on the right *) match kind_of_term c2 with | Proj (pr, c) when not (Projection.unfolded pr) -> (try let term = Retyping.expand_projection env sigma pr c (Array.to_list args2) in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | _ -> raise PatternMatchingFailure) | PApp (c1,arg1), App (c2,arg2) -> (match c1, kind_of_term c2 with | PRef (ConstRef r), Proj (pr,c) when not (eq_constant r (Projection.constant pr)) || Projection.unfolded pr -> raise PatternMatchingFailure | PProj (pr1,c1), Proj (pr,c) -> if Projection.equal pr1 pr then try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c) arg1 arg2 with Invalid_argument _ -> raise PatternMatchingFailure else raise PatternMatchingFailure | _, Proj (pr,c) when not (Projection.unfolded pr) -> (try let term = Retyping.expand_projection env sigma pr c (Array.to_list arg2) in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | _, _ -> try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c2) arg1 arg2 with Invalid_argument _ -> raise PatternMatchingFailure) | PApp (PRef (ConstRef c1), _), Proj (pr, c2) when Projection.unfolded pr || not (eq_constant c1 (Projection.constant pr)) -> raise PatternMatchingFailure | PApp (c, args), Proj (pr, c2) -> (try let term = Retyping.expand_projection env sigma pr c2 [] in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | PProj (p1,c1), Proj (p2,c2) when Projection.equal p1 p2 -> sorec ctx env subst c1 c2 | PProd (na1,c1,d1), Prod(na2,c2,d2) -> sorec ((na1,na2,c2)::ctx) (Environ.push_rel (na2,None,c2) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PLambda (na1,c1,d1), Lambda(na2,c2,d2) -> sorec ((na1,na2,c2)::ctx) (Environ.push_rel (na2,None,c2) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PLetIn (na1,c1,d1), LetIn(na2,c2,t2,d2) -> sorec ((na1,na2,t2)::ctx) (Environ.push_rel (na2,Some c2,t2) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PIf (a1,b1,b1'), Case (ci,_,a2,[|b2;b2'|]) -> let ctx_b2,b2 = decompose_lam_n_decls ci.ci_cstr_ndecls.(0) b2 in let ctx_b2',b2' = decompose_lam_n_decls ci.ci_cstr_ndecls.(1) b2' in let n = rel_context_length ctx_b2 in let n' = rel_context_length ctx_b2' in if noccur_between 1 n b2 && noccur_between 1 n' b2' then let f l (na,_,t) = (Anonymous,na,t)::l in let ctx_br = List.fold_left f ctx ctx_b2 in let ctx_br' = List.fold_left f ctx ctx_b2' in let b1 = lift_pattern n b1 and b1' = lift_pattern n' b1' in sorec ctx_br' (Environ.push_rel_context ctx_b2' env) (sorec ctx_br (Environ.push_rel_context ctx_b2 env) (sorec ctx env subst a1 a2) b1 b2) b1' b2' else raise PatternMatchingFailure | PCase (ci1,p1,a1,br1), Case (ci2,p2,a2,br2) -> let n2 = Array.length br2 in let () = match ci1.cip_ind with | None -> () | Some ind1 -> (** ppedrot: Something spooky going here. The comparison used to be the generic one, so I may have broken something. *) if not (eq_ind ind1 ci2.ci_ind) then raise PatternMatchingFailure in let () = if not ci1.cip_extensible && not (Int.equal (List.length br1) n2) then raise PatternMatchingFailure in let chk_branch subst (j,n,c) = (* (ind,j+1) is normally known to be a correct constructor and br2 a correct match over the same inductive *) assert (j < n2); sorec ctx env subst c br2.(j) in let chk_head = sorec ctx env (sorec ctx env subst a1 a2) p1 p2 in List.fold_left chk_branch chk_head br1 | PFix c1, Fix _ when eq_constr (mkFix c1) cT -> subst | PCoFix c1, CoFix _ when eq_constr (mkCoFix c1) cT -> subst | _ -> raise PatternMatchingFailure in sorec [] env (Id.Map.empty, Id.Map.empty) pat c let matches_core_closed env sigma convert allow_partial_app pat c = let names, subst = matches_core env sigma convert allow_partial_app false pat c in (names, Id.Map.map snd subst) let extended_matches env sigma = matches_core env sigma false true true let matches env sigma pat c = snd (matches_core_closed env sigma false true (Id.Set.empty,pat) c) let special_meta = (-1) type matching_result = { m_sub : bound_ident_map * patvar_map; m_ctx : constr; } let mkresult s c n = IStream.Cons ( { m_sub=s; m_ctx=c; } , (IStream.thunk n) ) let isPMeta = function PMeta _ -> true | _ -> false let matches_head env sigma pat c = let head = match pat, kind_of_term c with | PApp (c1,arg1), App (c2,arg2) -> if isPMeta c1 then c else let n1 = Array.length arg1 in if n1 < Array.length arg2 then mkApp (c2,Array.sub arg2 0 n1) else c | c1, App (c2,arg2) when not (isPMeta c1) -> c2 | _ -> c in matches env sigma pat head (* Tells if it is an authorized occurrence and if the instance is closed *) let authorized_occ env sigma partial_app closed pat c mk_ctx = try let subst = matches_core_closed env sigma false partial_app pat c in if closed && Id.Map.exists (fun _ c -> not (closed0 c)) (snd subst) then (fun next -> next ()) else (fun next -> mkresult subst (mk_ctx (mkMeta special_meta)) next) with PatternMatchingFailure -> (fun next -> next ()) let subargs env v = Array.map_to_list (fun c -> (env, c)) v (* Tries to match a subterm of [c] with [pat] *) let sub_match ?(partial_app=false) ?(closed=true) env sigma pat c = let rec aux env c mk_ctx next = let here = authorized_occ env sigma partial_app closed pat c mk_ctx in let next () = match kind_of_term c with | Cast (c1,k,c2) -> let next_mk_ctx = function | [c1] -> mk_ctx (mkCast (c1, k, c2)) | _ -> assert false in try_aux [env, c1] next_mk_ctx next | Lambda (x,c1,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkLambda (x, c1, c2)) | _ -> assert false in let env' = Environ.push_rel (x,None,c1) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | Prod (x,c1,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkProd (x, c1, c2)) | _ -> assert false in let env' = Environ.push_rel (x,None,c1) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | LetIn (x,c1,t,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkLetIn (x, c1, t, c2)) | _ -> assert false in let env' = Environ.push_rel (x,Some c1,t) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | App (c1,lc) -> let topdown = true in if partial_app then if topdown then let lc1 = Array.sub lc 0 (Array.length lc - 1) in let app = mkApp (c1,lc1) in let mk_ctx = function | [app';c] -> mk_ctx (mkApp (app',[|c|])) | _ -> assert false in try_aux [(env, app); (env, Array.last lc)] mk_ctx next else let rec aux2 app args next = match args with | [] -> let mk_ctx le = mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in let sub = (env, c1) :: subargs env lc in try_aux sub mk_ctx next | arg :: args -> let app = mkApp (app,[|arg|]) in let next () = aux2 app args next in let mk_ctx ce = mk_ctx (mkApp (ce, Array.of_list args)) in aux env app mk_ctx next in aux2 c1 (Array.to_list lc) next else let mk_ctx le = mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in let sub = (env, c1) :: subargs env lc in try_aux sub mk_ctx next | Case (ci,hd,c1,lc) -> let next_mk_ctx = function | c1 :: hd :: lc -> mk_ctx (mkCase (ci,hd,c1,Array.of_list lc)) | _ -> assert false in let sub = (env, c1) :: (env, hd) :: subargs env lc in try_aux sub next_mk_ctx next | Fix (indx,(names,types,bodies)) -> let nb_fix = Array.length types in let next_mk_ctx le = let (ntypes,nbodies) = CList.chop nb_fix le in mk_ctx (mkFix (indx,(names, Array.of_list ntypes, Array.of_list nbodies))) in let sub = subargs env types @ subargs env bodies in try_aux sub next_mk_ctx next | CoFix (i,(names,types,bodies)) -> let nb_fix = Array.length types in let next_mk_ctx le = let (ntypes,nbodies) = CList.chop nb_fix le in mk_ctx (mkCoFix (i,(names, Array.of_list ntypes, Array.of_list nbodies))) in let sub = subargs env types @ subargs env bodies in try_aux sub next_mk_ctx next | Proj (p,c') -> let next_mk_ctx le = mk_ctx (mkProj (p,List.hd le)) in if partial_app then try let term = Retyping.expand_projection env sigma p c' [] in aux env term mk_ctx next with Retyping.RetypeError _ -> next () else try_aux [env, c'] next_mk_ctx next | Construct _| Ind _|Evar _|Const _ | Rel _|Meta _|Var _|Sort _ -> next () in here next (* Tries [sub_match] for all terms in the list *) and try_aux lc mk_ctx next = let rec try_sub_match_rec lacc lc = match lc with | [] -> next () | (env, c) :: tl -> let mk_ctx ce = mk_ctx (List.rev_append lacc (ce :: List.map snd tl)) in let next () = try_sub_match_rec (c :: lacc) tl in aux env c mk_ctx next in try_sub_match_rec [] lc in let lempty () = IStream.Nil in let result () = aux env c (fun x -> x) lempty in IStream.thunk result let match_subterm env sigma pat c = sub_match env sigma (Id.Set.empty,pat) c let match_appsubterm env sigma pat c = sub_match ~partial_app:true env sigma (Id.Set.empty,pat) c let match_subterm_gen env sigma app pat c = sub_match ~partial_app:app env sigma pat c let is_matching env sigma pat c = try let _ = matches env sigma pat c in true with PatternMatchingFailure -> false let is_matching_head env sigma pat c = try let _ = matches_head env sigma pat c in true with PatternMatchingFailure -> false let is_matching_appsubterm ?(closed=true) env sigma pat c = let pat = (Id.Set.empty,pat) in let results = sub_match ~partial_app:true ~closed env sigma pat c in not (IStream.is_empty results) let matches_conv env sigma p c = snd (matches_core_closed env sigma true false (Id.Set.empty,p) c) let is_matching_conv env sigma pat n = try let _ = matches_conv env sigma pat n in true with PatternMatchingFailure -> false