(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R -> R. Variable req : R -> R -> Prop. Variable Rsth : Setoid_Theory R req. Notation "x * y " := (rmul x y). Notation "x == y" := (req x y). Hypothesis mul_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2. Hypothesis mul_comm : forall x y, x * y == y * x. Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z. Add Setoid R req Rsth as R_set_Power. Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed. Fixpoint pow_pos (x:R) (i:positive) {struct i}: R := match i with | xH => x | xO i => let p := pow_pos x i in rmul p p | xI i => let p := pow_pos x i in rmul x (rmul p p) end. Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j. Proof. induction j;simpl. rewrite IHj. rewrite (mul_comm x (pow_pos x j *pow_pos x j)). setoid_rewrite (mul_comm x (pow_pos x j)) at 2. repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). apply (Seq_refl _ _ Rsth). Qed. Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j. Proof. intro x;induction i;intros. rewrite xI_succ_xO;rewrite Pplus_one_succ_r. rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. repeat rewrite IHi. rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc. simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth). rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc; simpl. apply (Seq_refl _ _ Rsth). Qed. Definition pow_N (x:R) (p:N) := match p with | N0 => rI | Npos p => pow_pos x p end. Definition id_phi_N (x:N) : N := x. Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n. Proof. intros; apply (Seq_refl _ _ Rsth). Qed. End Power. Section DEFINITIONS. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). Notation "x == y" := (req x y). (** Semi Ring *) Record semi_ring_theory : Prop := mk_srt { SRadd_0_l : forall n, 0 + n == n; SRadd_comm : forall n m, n + m == m + n ; SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p; SRmul_1_l : forall n, 1*n == n; SRmul_0_l : forall n, 0*n == 0; SRmul_comm : forall n m, n*m == m*n; SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p; SRdistr_l : forall n m p, (n + m)*p == n*p + m*p }. (** Almost Ring *) (*Almost ring are no ring : Ropp_def is missing **) Record almost_ring_theory : Prop := mk_art { ARadd_0_l : forall x, 0 + x == x; ARadd_comm : forall x y, x + y == y + x; ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z; ARmul_1_l : forall x, 1 * x == x; ARmul_0_l : forall x, 0 * x == 0; ARmul_comm : forall x y, x * y == y * x; ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z; ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); ARopp_mul_l : forall x y, -(x * y) == -x * y; ARopp_add : forall x y, -(x + y) == -x + -y; ARsub_def : forall x y, x - y == x + -y }. (** Ring *) Record ring_theory : Prop := mk_rt { Radd_0_l : forall x, 0 + x == x; Radd_comm : forall x y, x + y == y + x; Radd_assoc : forall x y z, x + (y + z) == (x + y) + z; Rmul_1_l : forall x, 1 * x == x; Rmul_comm : forall x y, x * y == y * x; Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z; Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); Rsub_def : forall x y, x - y == x + -y; Ropp_def : forall x, x + (- x) == 0 }. (** Equality is extensional *) Record sring_eq_ext : Prop := mk_seqe { (* SRing operators are compatible with equality *) SRadd_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; SRmul_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2 }. Record ring_eq_ext : Prop := mk_reqe { (* Ring operators are compatible with equality *) Radd_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; Rmul_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2; Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2 }. (** Interpretation morphisms definition*) Section MORPHISM. Variable C:Type. Variable (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C). Variable ceqb : C->C->bool. (* [phi] est un morphisme de [C] dans [R] *) Variable phi : C -> R. Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y). Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x). Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). (*for semi rings*) Record semi_morph : Prop := mkRmorph { Smorph0 : [cO] == 0; Smorph1 : [cI] == 1; Smorph_add : forall x y, [x +! y] == [x]+[y]; Smorph_mul : forall x y, [x *! y] == [x]*[y]; Smorph_eq : forall x y, x?=!y = true -> [x] == [y] }. (* for rings*) Record ring_morph : Prop := mkmorph { morph0 : [cO] == 0; morph1 : [cI] == 1; morph_add : forall x y, [x +! y] == [x]+[y]; morph_sub : forall x y, [x -! y] == [x]-[y]; morph_mul : forall x y, [x *! y] == [x]*[y]; morph_opp : forall x, [-!x] == -[x]; morph_eq : forall x y, x?=!y = true -> [x] == [y] }. Section SIGN. Variable get_sign : C -> option C. Record sign_theory : Prop := mksign_th { sign_spec : forall c c', get_sign c = Some c' -> c ?=! -! c' = true }. End SIGN. Definition get_sign_None (c:C) := @None C. Lemma get_sign_None_th : sign_theory get_sign_None. Proof. constructor;intros;discriminate. Qed. Section DIV. Variable cdiv: C -> C -> C*C. Record div_theory : Prop := mkdiv_th { div_eucl_th : forall a b, let (q,r) := cdiv a b in [a] == [b *! q +! r] }. End DIV. End MORPHISM. (** Identity is a morphism *) Variable Rsth : Setoid_Theory R req. Add Setoid R req Rsth as R_setoid1. Variable reqb : R->R->bool. Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y. Definition IDphi (x:R) := x. Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi. Proof. apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi; try apply (Seq_refl _ _ Rsth);auto. Qed. (** Specification of the power function *) Section POWER. Variable Cpow : Set. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. Record power_theory : Prop := mkpow_th { rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n) }. End POWER. Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth). End DEFINITIONS. Section ALMOST_RING. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). Notation "x == y" := (req x y). (** Leibniz equality leads to a setoid theory and is extensional*) Lemma Eqsth : Setoid_Theory R (@eq R). Proof. constructor;red;intros;subst;trivial. Qed. Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R). Proof. constructor;intros;subst;trivial. Qed. Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R). Proof. constructor;intros;subst;trivial. Qed. Variable Rsth : Setoid_Theory R req. Add Setoid R req Rsth as R_setoid2. Ltac sreflexivity := apply (Seq_refl _ _ Rsth). Section SEMI_RING. Variable SReqe : sring_eq_ext radd rmul req. Add Morphism radd : radd_ext1. exact (SRadd_ext SReqe). Qed. Add Morphism rmul : rmul_ext1. exact (SRmul_ext SReqe). Qed. Variable SRth : semi_ring_theory 0 1 radd rmul req. (** Every semi ring can be seen as an almost ring, by taking : -x = x and x - y = x + y *) Definition SRopp (x:R) := x. Notation "- x" := (SRopp x). Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y). Lemma SRopp_ext : forall x y, x == y -> -x == -y. Proof. intros x y H;exact H. Qed. Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req. Proof. constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe). exact SRopp_ext. Qed. Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y. Proof. intros;sreflexivity. Qed. Lemma SRopp_add : forall x y, -(x + y) == -x + -y. Proof. intros;sreflexivity. Qed. Lemma SRsub_def : forall x y, x - y == x + -y. Proof. intros;sreflexivity. Qed. Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req. Proof (mk_art 0 1 radd rmul SRsub SRopp req (SRadd_0_l SRth) (SRadd_comm SRth) (SRadd_assoc SRth) (SRmul_1_l SRth) (SRmul_0_l SRth) (SRmul_comm SRth) (SRmul_assoc SRth) (SRdistr_l SRth) SRopp_mul_l SRopp_add SRsub_def). (** Identity morphism for semi-ring equipped with their almost-ring structure*) Variable reqb : R->R->bool. Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y. Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req 0 1 radd rmul SRsub SRopp reqb (@IDphi R). Proof. apply mkmorph;intros;try sreflexivity. unfold IDphi;auto. Qed. (* a semi_morph can be extended to a ring_morph for the almost_ring derived from a semi_ring, provided the ring is a setoid (we only need reflexivity) *) Variable C : Type. Variable (cO cI : C) (cadd cmul: C->C->C). Variable (ceqb : C -> C -> bool). Variable phi : C -> R. Variable Smorph : semi_morph rO rI radd rmul req cO cI cadd cmul ceqb phi. Lemma SRmorph_Rmorph : ring_morph rO rI radd rmul SRsub SRopp req cO cI cadd cmul cadd (fun x => x) ceqb phi. Proof. case Smorph; intros; constructor; auto. unfold SRopp in |- *; intros. setoid_reflexivity. Qed. End SEMI_RING. Variable Reqe : ring_eq_ext radd rmul ropp req. Add Morphism radd : radd_ext2. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext2. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext2. exact (Ropp_ext Reqe). Qed. Section RING. Variable Rth : ring_theory 0 1 radd rmul rsub ropp req. (** Rings are almost rings*) Lemma Rmul_0_l : forall x, 0 * x == 0. Proof. intro x; setoid_replace (0*x) with ((0+1)*x + -x). rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth). rewrite (Ropp_def Rth);sreflexivity. rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth). rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity. Qed. Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y. Proof. intros x y;rewrite <-(Radd_0_l Rth (- x * y)). rewrite (Radd_comm Rth). rewrite <-(Ropp_def Rth (x*y)). rewrite (Radd_assoc Rth). rewrite <- (Rdistr_l Rth). rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth). rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity. Qed. Lemma Ropp_add : forall x y, -(x + y) == -x + -y. Proof. intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))). rewrite <- ((Ropp_def Rth) x). rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))). rewrite <- ((Ropp_def Rth) y). rewrite ((Radd_comm Rth) x). rewrite ((Radd_comm Rth) y). rewrite <- ((Radd_assoc Rth) (-y)). rewrite <- ((Radd_assoc Rth) (- x)). rewrite ((Radd_assoc Rth) y). rewrite ((Radd_comm Rth) y). rewrite <- ((Radd_assoc Rth) (- x)). rewrite ((Radd_assoc Rth) y). rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth). rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth). apply (Radd_comm Rth). Qed. Lemma Ropp_opp : forall x, - -x == x. Proof. intros x; rewrite <- (Radd_0_l Rth (- -x)). rewrite <- (Ropp_def Rth x). rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth). Qed. Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req. Proof (mk_art 0 1 radd rmul rsub ropp req (Radd_0_l Rth) (Radd_comm Rth) (Radd_assoc Rth) (Rmul_1_l Rth) Rmul_0_l (Rmul_comm Rth) (Rmul_assoc Rth) (Rdistr_l Rth) Ropp_mul_l Ropp_add (Rsub_def Rth)). (** Every semi morphism between two rings is a morphism*) Variable C : Type. Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C). Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool). Variable phi : C -> R. Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). Variable Csth : Setoid_Theory C ceq. Variable Ceqe : ring_eq_ext cadd cmul copp ceq. Add Setoid C ceq Csth as C_setoid. Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed. Add Morphism cmul : cmul_ext. exact (Rmul_ext Ceqe). Qed. Add Morphism copp : copp_ext. exact (Ropp_ext Ceqe). Qed. Variable Cth : ring_theory cO cI cadd cmul csub copp ceq. Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi. Variable phi_ext : forall x y, ceq x y -> [x] == [y]. Add Morphism phi : phi_ext1. exact phi_ext. Qed. Lemma Smorph_opp : forall x, [-!x] == -[x]. Proof. intros x;rewrite <- (Rth.(Radd_0_l) [-!x]). rewrite <- ((Ropp_def Rth) [x]). rewrite ((Radd_comm Rth) [x]). rewrite <- (Radd_assoc Rth). rewrite <- (Smorph_add Smorph). rewrite (Ropp_def Cth). rewrite (Smorph0 Smorph). rewrite (Radd_comm Rth (-[x])). apply (Radd_0_l Rth);sreflexivity. Qed. Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y]. Proof. intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth). rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity. Qed. Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. Proof (mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi (Smorph0 Smorph) (Smorph1 Smorph) (Smorph_add Smorph) Smorph_sub (Smorph_mul Smorph) Smorph_opp (Smorph_eq Smorph)). End RING. (** Useful lemmas on almost ring *) Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req. Lemma ARth_SRth : semi_ring_theory 0 1 radd rmul req. Proof. elim ARth; intros. constructor; trivial. Qed. Lemma ARsub_ext : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2. Proof. intros. setoid_replace (x1 - y1) with (x1 + -y1). setoid_replace (x2 - y2) with (x2 + -y2). rewrite H;rewrite H0;sreflexivity. apply (ARsub_def ARth). apply (ARsub_def ARth). Qed. Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed. Ltac mrewrite := repeat first [ rewrite (ARadd_0_l ARth) | rewrite <- ((ARadd_comm ARth) 0) | rewrite (ARmul_1_l ARth) | rewrite <- ((ARmul_comm ARth) 1) | rewrite (ARmul_0_l ARth) | rewrite <- ((ARmul_comm ARth) 0) | rewrite (ARdistr_l ARth) | sreflexivity | match goal with | |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y)) end]. Lemma ARadd_0_r : forall x, (x + 0) == x. Proof. intros; mrewrite. Qed. Lemma ARmul_1_r : forall x, x * 1 == x. Proof. intros;mrewrite. Qed. Lemma ARmul_0_r : forall x, x * 0 == 0. Proof. intros;mrewrite. Qed. Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y. Proof. intros;mrewrite. repeat rewrite (ARth.(ARmul_comm) z);sreflexivity. Qed. Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x. Proof. intros;rewrite <-(ARth.(ARadd_assoc) x). rewrite (ARth.(ARadd_comm) x);sreflexivity. Qed. Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x. Proof. intros; repeat rewrite <- (ARadd_assoc ARth); rewrite ((ARadd_comm ARth) x); sreflexivity. Qed. Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x. Proof. intros;rewrite <-((ARmul_assoc ARth) x). rewrite ((ARmul_comm ARth) x);sreflexivity. Qed. Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x. Proof. intros; repeat rewrite <- (ARmul_assoc ARth); rewrite ((ARmul_comm ARth) x); sreflexivity. Qed. Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y. Proof. intros;rewrite ((ARmul_comm ARth) x y); rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth). Qed. Lemma ARopp_zero : -0 == 0. Proof. rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth). repeat rewrite ARmul_0_r; sreflexivity. Qed. End ALMOST_RING. Section AddRing. (* Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. *) Inductive ring_kind : Type := | Abstract | Computational (R:Type) (req : R -> R -> Prop) (reqb : R -> R -> bool) (_ : forall x y, (reqb x y) = true -> req x y) | Morphism (R : Type) (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R) (req : R -> R -> Prop) (C : Type) (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C) (ceqb : C->C->bool) phi (_ : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi). End AddRing. (** Some simplification tactics*) Ltac gen_reflexivity Rsth := apply (Seq_refl _ _ Rsth). Ltac gen_srewrite Rsth Reqe ARth := repeat first [ gen_reflexivity Rsth | progress rewrite (ARopp_zero Rsth Reqe ARth) | rewrite (ARadd_0_l ARth) | rewrite (ARadd_0_r Rsth ARth) | rewrite (ARmul_1_l ARth) | rewrite (ARmul_1_r Rsth ARth) | rewrite (ARmul_0_l ARth) | rewrite (ARmul_0_r Rsth ARth) | rewrite (ARdistr_l ARth) | rewrite (ARdistr_r Rsth Reqe ARth) | rewrite (ARadd_assoc ARth) | rewrite (ARmul_assoc ARth) | progress rewrite (ARopp_add ARth) | progress rewrite (ARsub_def ARth) | progress rewrite <- (ARopp_mul_l ARth) | progress rewrite <- (ARopp_mul_r Rsth Reqe ARth) ]. Ltac gen_add_push add Rsth Reqe ARth x := repeat (match goal with | |- context [add (add ?y x) ?z] => progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z) | |- context [add (add x ?y) ?z] => progress rewrite (ARadd_assoc1 Rsth ARth x y z) end). Ltac gen_mul_push mul Rsth Reqe ARth x := repeat (match goal with | |- context [mul (mul ?y x) ?z] => progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z) | |- context [mul (mul x ?y) ?z] => progress rewrite (ARmul_assoc1 Rsth ARth x y z) end).