(************************************************************************* PROJET RNRT Calife - 2001 Author: Pierre Crégut - France Télécom R&D Licence : LGPL version 2.1 *************************************************************************) (** Coq objects used in romega *) (* from Logic *) val coq_refl_equal : Term.constr lazy_t val coq_and : Term.constr lazy_t val coq_not : Term.constr lazy_t val coq_or : Term.constr lazy_t val coq_True : Term.constr lazy_t val coq_False : Term.constr lazy_t val coq_I : Term.constr lazy_t (* from ReflOmegaCore/ZOmega *) val coq_h_step : Term.constr lazy_t val coq_pair_step : Term.constr lazy_t val coq_p_left : Term.constr lazy_t val coq_p_right : Term.constr lazy_t val coq_p_invert : Term.constr lazy_t val coq_p_step : Term.constr lazy_t val coq_t_int : Term.constr lazy_t val coq_t_plus : Term.constr lazy_t val coq_t_mult : Term.constr lazy_t val coq_t_opp : Term.constr lazy_t val coq_t_minus : Term.constr lazy_t val coq_t_var : Term.constr lazy_t val coq_proposition : Term.constr lazy_t val coq_p_eq : Term.constr lazy_t val coq_p_leq : Term.constr lazy_t val coq_p_geq : Term.constr lazy_t val coq_p_lt : Term.constr lazy_t val coq_p_gt : Term.constr lazy_t val coq_p_neq : Term.constr lazy_t val coq_p_true : Term.constr lazy_t val coq_p_false : Term.constr lazy_t val coq_p_not : Term.constr lazy_t val coq_p_or : Term.constr lazy_t val coq_p_and : Term.constr lazy_t val coq_p_imp : Term.constr lazy_t val coq_p_prop : Term.constr lazy_t val coq_f_equal : Term.constr lazy_t val coq_f_cancel : Term.constr lazy_t val coq_f_left : Term.constr lazy_t val coq_f_right : Term.constr lazy_t val coq_c_do_both : Term.constr lazy_t val coq_c_do_left : Term.constr lazy_t val coq_c_do_right : Term.constr lazy_t val coq_c_do_seq : Term.constr lazy_t val coq_c_nop : Term.constr lazy_t val coq_c_opp_plus : Term.constr lazy_t val coq_c_opp_opp : Term.constr lazy_t val coq_c_opp_mult_r : Term.constr lazy_t val coq_c_opp_one : Term.constr lazy_t val coq_c_reduce : Term.constr lazy_t val coq_c_mult_plus_distr : Term.constr lazy_t val coq_c_opp_left : Term.constr lazy_t val coq_c_mult_assoc_r : Term.constr lazy_t val coq_c_plus_assoc_r : Term.constr lazy_t val coq_c_plus_assoc_l : Term.constr lazy_t val coq_c_plus_permute : Term.constr lazy_t val coq_c_plus_comm : Term.constr lazy_t val coq_c_red0 : Term.constr lazy_t val coq_c_red1 : Term.constr lazy_t val coq_c_red2 : Term.constr lazy_t val coq_c_red3 : Term.constr lazy_t val coq_c_red4 : Term.constr lazy_t val coq_c_red5 : Term.constr lazy_t val coq_c_red6 : Term.constr lazy_t val coq_c_mult_opp_left : Term.constr lazy_t val coq_c_mult_assoc_reduced : Term.constr lazy_t val coq_c_minus : Term.constr lazy_t val coq_c_mult_comm : Term.constr lazy_t val coq_s_constant_not_nul : Term.constr lazy_t val coq_s_constant_neg : Term.constr lazy_t val coq_s_div_approx : Term.constr lazy_t val coq_s_not_exact_divide : Term.constr lazy_t val coq_s_exact_divide : Term.constr lazy_t val coq_s_sum : Term.constr lazy_t val coq_s_state : Term.constr lazy_t val coq_s_contradiction : Term.constr lazy_t val coq_s_merge_eq : Term.constr lazy_t val coq_s_split_ineq : Term.constr lazy_t val coq_s_constant_nul : Term.constr lazy_t val coq_s_negate_contradict : Term.constr lazy_t val coq_s_negate_contradict_inv : Term.constr lazy_t val coq_direction : Term.constr lazy_t val coq_d_left : Term.constr lazy_t val coq_d_right : Term.constr lazy_t val coq_d_mono : Term.constr lazy_t val coq_e_split : Term.constr lazy_t val coq_e_extract : Term.constr lazy_t val coq_e_solve : Term.constr lazy_t val coq_interp_sequent : Term.constr lazy_t val coq_do_omega : Term.constr lazy_t (** Building expressions *) val do_left : Term.constr -> Term.constr val do_right : Term.constr -> Term.constr val do_both : Term.constr -> Term.constr -> Term.constr val do_seq : Term.constr -> Term.constr -> Term.constr val do_list : Term.constr list -> Term.constr val mk_nat : int -> Term.constr (** Precondition: the type of the list is in Set *) val mk_list : Term.constr -> Term.constr list -> Term.constr val mk_plist : Term.types list -> Term.types val mk_shuffle_list : Term.constr list -> Term.constr (** Analyzing a coq term *) (* The generic result shape of the analysis of a term. One-level depth, except when a number is found *) type parse_term = Tplus of Term.constr * Term.constr | Tmult of Term.constr * Term.constr | Tminus of Term.constr * Term.constr | Topp of Term.constr | Tsucc of Term.constr | Tnum of Bigint.bigint | Tother (* The generic result shape of the analysis of a relation. One-level depth. *) type parse_rel = Req of Term.constr * Term.constr | Rne of Term.constr * Term.constr | Rlt of Term.constr * Term.constr | Rle of Term.constr * Term.constr | Rgt of Term.constr * Term.constr | Rge of Term.constr * Term.constr | Rtrue | Rfalse | Rnot of Term.constr | Ror of Term.constr * Term.constr | Rand of Term.constr * Term.constr | Rimp of Term.constr * Term.constr | Riff of Term.constr * Term.constr | Rother (* A module factorizing what we should now about the number representation *) module type Int = sig (* the coq type of the numbers *) val typ : Term.constr Lazy.t (* the operations on the numbers *) val plus : Term.constr Lazy.t val mult : Term.constr Lazy.t val opp : Term.constr Lazy.t val minus : Term.constr Lazy.t (* building a coq number *) val mk : Bigint.bigint -> Term.constr (* parsing a term (one level, except if a number is found) *) val parse_term : Term.constr -> parse_term (* parsing a relation expression, including = < <= >= > *) val parse_rel : Proof_type.goal Tacmach.sigma -> Term.constr -> parse_rel (* Is a particular term only made of numbers and + * - ? *) val is_scalar : Term.constr -> bool end (* Currently, we only use Z numbers *) module Z : Int