(************************************************************************* PROJET RNRT Calife - 2001 Author: Pierre Crégut - France Télécom R&D Licence : LGPL version 2.1 *************************************************************************) let module_refl_name = "ReflOmegaCore" let module_refl_path = ["Coq"; "romega"; module_refl_name] type result = Kvar of string | Kapp of string * Term.constr list | Kimp of Term.constr * Term.constr | Kufo;; let meaningful_submodule = [ "Z"; "N"; "Pos" ] let string_of_global r = let dp = Nametab.dirpath_of_global r in let prefix = match Names.DirPath.repr dp with | [] -> "" | m::_ -> let s = Names.Id.to_string m in if Util.String.List.mem s meaningful_submodule then s^"." else "" in prefix^(Names.Id.to_string (Nametab.basename_of_global r)) let destructurate t = let c, args = Term.decompose_app t in match Term.kind_of_term c, args with | Term.Const (sp,_), args -> Kapp (string_of_global (Globnames.ConstRef sp), args) | Term.Construct (csp,_) , args -> Kapp (string_of_global (Globnames.ConstructRef csp), args) | Term.Ind (isp,_), args -> Kapp (string_of_global (Globnames.IndRef isp), args) | Term.Var id,[] -> Kvar(Names.Id.to_string id) | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body) | Term.Prod (Names.Name _,_,_),[] -> CErrors.error "Omega: Not a quantifier-free goal" | _ -> Kufo exception Destruct let dest_const_apply t = let f,args = Term.decompose_app t in let ref = match Term.kind_of_term f with | Term.Const (sp,_) -> Globnames.ConstRef sp | Term.Construct (csp,_) -> Globnames.ConstructRef csp | Term.Ind (isp,_) -> Globnames.IndRef isp | _ -> raise Destruct in Nametab.basename_of_global ref, args let logic_dir = ["Coq";"Logic";"Decidable"] let coq_modules = Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules @ [["Coq"; "Lists"; "List"]] @ [module_refl_path] @ [module_refl_path@["ZOmega"]] let bin_module = [["Coq";"Numbers";"BinNums"]] let z_module = [["Coq";"ZArith";"BinInt"]] let init_constant = Coqlib.gen_constant_in_modules "Omega" Coqlib.init_modules let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules let z_constant = Coqlib.gen_constant_in_modules "Omega" z_module let bin_constant = Coqlib.gen_constant_in_modules "Omega" bin_module (* Logic *) let coq_refl_equal = lazy(init_constant "eq_refl") let coq_and = lazy(init_constant "and") let coq_not = lazy(init_constant "not") let coq_or = lazy(init_constant "or") let coq_True = lazy(init_constant "True") let coq_False = lazy(init_constant "False") let coq_I = lazy(init_constant "I") (* ReflOmegaCore/ZOmega *) let coq_h_step = lazy (constant "h_step") let coq_pair_step = lazy (constant "pair_step") let coq_p_left = lazy (constant "P_LEFT") let coq_p_right = lazy (constant "P_RIGHT") let coq_p_invert = lazy (constant "P_INVERT") let coq_p_step = lazy (constant "P_STEP") let coq_t_int = lazy (constant "Tint") let coq_t_plus = lazy (constant "Tplus") let coq_t_mult = lazy (constant "Tmult") let coq_t_opp = lazy (constant "Topp") let coq_t_minus = lazy (constant "Tminus") let coq_t_var = lazy (constant "Tvar") let coq_proposition = lazy (constant "proposition") let coq_p_eq = lazy (constant "EqTerm") let coq_p_leq = lazy (constant "LeqTerm") let coq_p_geq = lazy (constant "GeqTerm") let coq_p_lt = lazy (constant "LtTerm") let coq_p_gt = lazy (constant "GtTerm") let coq_p_neq = lazy (constant "NeqTerm") let coq_p_true = lazy (constant "TrueTerm") let coq_p_false = lazy (constant "FalseTerm") let coq_p_not = lazy (constant "Tnot") let coq_p_or = lazy (constant "Tor") let coq_p_and = lazy (constant "Tand") let coq_p_imp = lazy (constant "Timp") let coq_p_prop = lazy (constant "Tprop") (* Constructors for shuffle tactic *) let coq_t_fusion = lazy (constant "t_fusion") let coq_f_equal = lazy (constant "F_equal") let coq_f_cancel = lazy (constant "F_cancel") let coq_f_left = lazy (constant "F_left") let coq_f_right = lazy (constant "F_right") (* Constructors for reordering tactics *) let coq_c_do_both = lazy (constant "C_DO_BOTH") let coq_c_do_left = lazy (constant "C_LEFT") let coq_c_do_right = lazy (constant "C_RIGHT") let coq_c_do_seq = lazy (constant "C_SEQ") let coq_c_nop = lazy (constant "C_NOP") let coq_c_opp_plus = lazy (constant "C_OPP_PLUS") let coq_c_opp_opp = lazy (constant "C_OPP_OPP") let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R") let coq_c_opp_one = lazy (constant "C_OPP_ONE") let coq_c_reduce = lazy (constant "C_REDUCE") let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR") let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT") let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R") let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R") let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L") let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE") let coq_c_plus_comm = lazy (constant "C_PLUS_COMM") let coq_c_red0 = lazy (constant "C_RED0") let coq_c_red1 = lazy (constant "C_RED1") let coq_c_red2 = lazy (constant "C_RED2") let coq_c_red3 = lazy (constant "C_RED3") let coq_c_red4 = lazy (constant "C_RED4") let coq_c_red5 = lazy (constant "C_RED5") let coq_c_red6 = lazy (constant "C_RED6") let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT") let coq_c_mult_assoc_reduced = lazy (constant "C_MULT_ASSOC_REDUCED") let coq_c_minus = lazy (constant "C_MINUS") let coq_c_mult_comm = lazy (constant "C_MULT_COMM") let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL") let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG") let coq_s_div_approx = lazy (constant "O_DIV_APPROX") let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE") let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE") let coq_s_sum = lazy (constant "O_SUM") let coq_s_state = lazy (constant "O_STATE") let coq_s_contradiction = lazy (constant "O_CONTRADICTION") let coq_s_merge_eq = lazy (constant "O_MERGE_EQ") let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ") let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL") let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT") let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV") (* construction for the [extract_hyp] tactic *) let coq_direction = lazy (constant "direction") let coq_d_left = lazy (constant "D_left") let coq_d_right = lazy (constant "D_right") let coq_d_mono = lazy (constant "D_mono") let coq_e_split = lazy (constant "E_SPLIT") let coq_e_extract = lazy (constant "E_EXTRACT") let coq_e_solve = lazy (constant "E_SOLVE") let coq_interp_sequent = lazy (constant "interp_goal_concl") let coq_do_omega = lazy (constant "do_omega") (* \subsection{Construction d'expressions} *) let do_left t = if Term.eq_constr t (Lazy.force coq_c_nop) then Lazy.force coq_c_nop else Term.mkApp (Lazy.force coq_c_do_left, [|t |] ) let do_right t = if Term.eq_constr t (Lazy.force coq_c_nop) then Lazy.force coq_c_nop else Term.mkApp (Lazy.force coq_c_do_right, [|t |]) let do_both t1 t2 = if Term.eq_constr t1 (Lazy.force coq_c_nop) then do_right t2 else if Term.eq_constr t2 (Lazy.force coq_c_nop) then do_left t1 else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |]) let do_seq t1 t2 = if Term.eq_constr t1 (Lazy.force coq_c_nop) then t2 else if Term.eq_constr t2 (Lazy.force coq_c_nop) then t1 else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |]) let rec do_list = function | [] -> Lazy.force coq_c_nop | [x] -> x | (x::l) -> do_seq x (do_list l) (* Nat *) let coq_S = lazy(init_constant "S") let coq_O = lazy(init_constant "O") let rec mk_nat = function | 0 -> Lazy.force coq_O | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |]) (* Lists *) let mkListConst c = let r = Coqlib.gen_reference "" ["Init";"Datatypes"] c in let inst = if Global.is_polymorphic r then fun u -> Univ.Instance.of_array [|u|] else fun _ -> Univ.Instance.empty in fun u -> Term.mkConstructU (Globnames.destConstructRef r, inst u) let coq_cons univ typ = Term.mkApp (mkListConst "cons" univ, [|typ|]) let coq_nil univ typ = Term.mkApp (mkListConst "nil" univ, [|typ|]) let mk_list univ typ l = let rec loop = function | [] -> coq_nil univ typ | (step :: l) -> Term.mkApp (coq_cons univ typ, [| step; loop l |]) in loop l let mk_plist = let type1lev = Universes.new_univ_level (Global.current_dirpath ()) in fun l -> mk_list type1lev Term.mkProp l let mk_list = mk_list Univ.Level.set let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l type parse_term = | Tplus of Term.constr * Term.constr | Tmult of Term.constr * Term.constr | Tminus of Term.constr * Term.constr | Topp of Term.constr | Tsucc of Term.constr | Tnum of Bigint.bigint | Tother type parse_rel = | Req of Term.constr * Term.constr | Rne of Term.constr * Term.constr | Rlt of Term.constr * Term.constr | Rle of Term.constr * Term.constr | Rgt of Term.constr * Term.constr | Rge of Term.constr * Term.constr | Rtrue | Rfalse | Rnot of Term.constr | Ror of Term.constr * Term.constr | Rand of Term.constr * Term.constr | Rimp of Term.constr * Term.constr | Riff of Term.constr * Term.constr | Rother let parse_logic_rel c = try match destructurate c with | Kapp("True",[]) -> Rtrue | Kapp("False",[]) -> Rfalse | Kapp("not",[t]) -> Rnot t | Kapp("or",[t1;t2]) -> Ror (t1,t2) | Kapp("and",[t1;t2]) -> Rand (t1,t2) | Kimp(t1,t2) -> Rimp (t1,t2) | Kapp("iff",[t1;t2]) -> Riff (t1,t2) | _ -> Rother with e when Logic.catchable_exception e -> Rother module type Int = sig val typ : Term.constr Lazy.t val plus : Term.constr Lazy.t val mult : Term.constr Lazy.t val opp : Term.constr Lazy.t val minus : Term.constr Lazy.t val mk : Bigint.bigint -> Term.constr val parse_term : Term.constr -> parse_term val parse_rel : Proof_type.goal Tacmach.sigma -> Term.constr -> parse_rel (* check whether t is built only with numbers and + * - *) val is_scalar : Term.constr -> bool end module Z : Int = struct let typ = lazy (bin_constant "Z") let plus = lazy (z_constant "Z.add") let mult = lazy (z_constant "Z.mul") let opp = lazy (z_constant "Z.opp") let minus = lazy (z_constant "Z.sub") let coq_xH = lazy (bin_constant "xH") let coq_xO = lazy (bin_constant "xO") let coq_xI = lazy (bin_constant "xI") let coq_Z0 = lazy (bin_constant "Z0") let coq_Zpos = lazy (bin_constant "Zpos") let coq_Zneg = lazy (bin_constant "Zneg") let recognize t = let rec loop t = let f,l = dest_const_apply t in match Names.Id.to_string f,l with "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t)) | "xO",[t] -> Bigint.mult Bigint.two (loop t) | "xH",[] -> Bigint.one | _ -> failwith "not a number" in let f,l = dest_const_apply t in match Names.Id.to_string f,l with "Zpos",[t] -> loop t | "Zneg",[t] -> Bigint.neg (loop t) | "Z0",[] -> Bigint.zero | _ -> failwith "not a number";; let rec mk_positive n = if n=Bigint.one then Lazy.force coq_xH else let (q,r) = Bigint.euclid n Bigint.two in Term.mkApp ((if r = Bigint.zero then Lazy.force coq_xO else Lazy.force coq_xI), [| mk_positive q |]) let mk_Z n = if n = Bigint.zero then Lazy.force coq_Z0 else if Bigint.is_strictly_pos n then Term.mkApp (Lazy.force coq_Zpos, [| mk_positive n |]) else Term.mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |]) let mk = mk_Z let parse_term t = try match destructurate t with | Kapp("Z.add",[t1;t2]) -> Tplus (t1,t2) | Kapp("Z.sub",[t1;t2]) -> Tminus (t1,t2) | Kapp("Z.mul",[t1;t2]) -> Tmult (t1,t2) | Kapp("Z.opp",[t]) -> Topp t | Kapp("Z.succ",[t]) -> Tsucc t | Kapp("Z.pred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one)) | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> (try Tnum (recognize t) with e when CErrors.noncritical e -> Tother) | _ -> Tother with e when Logic.catchable_exception e -> Tother let parse_rel gl t = try match destructurate t with | Kapp("eq",[typ;t1;t2]) when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) -> Req (t1,t2) | Kapp("Zne",[t1;t2]) -> Rne (t1,t2) | Kapp("Z.le",[t1;t2]) -> Rle (t1,t2) | Kapp("Z.lt",[t1;t2]) -> Rlt (t1,t2) | Kapp("Z.ge",[t1;t2]) -> Rge (t1,t2) | Kapp("Z.gt",[t1;t2]) -> Rgt (t1,t2) | _ -> parse_logic_rel t with e when Logic.catchable_exception e -> Rother let is_scalar t = let rec aux t = match destructurate t with | Kapp(("Z.add"|"Z.sub"|"Z.mul"),[t1;t2]) -> aux t1 && aux t2 | Kapp(("Z.opp"|"Z.succ"|"Z.pred"),[t]) -> aux t | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> let _ = recognize t in true | _ -> false in try aux t with e when CErrors.noncritical e -> false end