(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Prop. Infix Local "==" := Aequiv (at level 70, no associativity). Variable S : Setoid_Theory A Aequiv. Add Setoid A Aequiv S as Asetoid. Variable Aplus : A -> A -> A. Variable Amult : A -> A -> A. Variable Aone : A. Variable Azero : A. Variable Aopp : A -> A. Variable Aeq : A -> A -> bool. Infix "+" := Aplus (at level 50, left associativity). Infix "*" := Amult (at level 40, left associativity). Notation "0" := Azero. Notation "1" := Aone. Notation "- x" := (Aopp x). Variable plus_morph : forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a + a1 == a0 + a2. Variable mult_morph : forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a * a1 == a0 * a2. Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0. Add Morphism Aplus : Aplus_ext. intros; apply plus_morph; assumption. Qed. Add Morphism Amult : Amult_ext. intros; apply mult_morph; assumption. Qed. Add Morphism Aopp : Aopp_ext. exact opp_morph. Qed. Section Theory_of_semi_setoid_rings. Record Semi_Setoid_Ring_Theory : Prop := {SSR_plus_comm : forall n m:A, n + m == m + n; SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p; SSR_mult_comm : forall n m:A, n * m == m * n; SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p; SSR_plus_zero_left : forall n:A, 0 + n == n; SSR_mult_one_left : forall n:A, 1 * n == n; SSR_mult_zero_left : forall n:A, 0 * n == 0; SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p; SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p; SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}. Variable T : Semi_Setoid_Ring_Theory. Let plus_comm := SSR_plus_comm T. Let plus_assoc := SSR_plus_assoc T. Let mult_comm := SSR_mult_comm T. Let mult_assoc := SSR_mult_assoc T. Let plus_zero_left := SSR_plus_zero_left T. Let mult_one_left := SSR_mult_one_left T. Let mult_zero_left := SSR_mult_zero_left T. Let distr_left := SSR_distr_left T. Let plus_reg_left := SSR_plus_reg_left T. Let equiv_refl := Seq_refl A Aequiv S. Let equiv_sym := Seq_sym A Aequiv S. Let equiv_trans := Seq_trans A Aequiv S. Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left mult_one_left mult_zero_left distr_left plus_reg_left equiv_refl (*equiv_sym*). Hint Immediate equiv_sym. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p). auto. Qed. Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p). auto. Qed. Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n. auto. Qed. Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n. auto. Qed. Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n. auto. Qed. Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p. auto. Qed. Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p). intros. rewrite (plus_assoc n m p). rewrite (plus_comm n m). rewrite <- (plus_assoc m n p). trivial. Qed. Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p). intros. rewrite (mult_assoc n m p). rewrite (mult_comm n m). rewrite <- (mult_assoc m n p). trivial. Qed. Hint Resolve SSR_plus_permute SSR_mult_permute. Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p. intros. rewrite (mult_comm n (m + p)). rewrite (mult_comm n m). rewrite (mult_comm n p). auto. Qed. Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p). intros. apply equiv_sym. apply SSR_distr_right. Qed. Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0. intro; rewrite (mult_comm n 0); auto. Qed. Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0. intro; rewrite (mult_comm n 0); auto. Qed. Lemma SSR_plus_zero_right : forall n:A, n + 0 == n. intro; rewrite (plus_comm n 0); auto. Qed. Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0. intro; rewrite (plus_comm n 0); auto. Qed. Lemma SSR_mult_one_right : forall n:A, n * 1 == n. intro; rewrite (mult_comm n 1); auto. Qed. Lemma SSR_mult_one_right2 : forall n:A, n == n * 1. intro; rewrite (mult_comm n 1); auto. Qed. Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p. intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n). intro; apply plus_reg_left with n; trivial. Qed. End Theory_of_semi_setoid_rings. Section Theory_of_setoid_rings. Record Setoid_Ring_Theory : Prop := {STh_plus_comm : forall n m:A, n + m == m + n; STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p; STh_mult_comm : forall n m:A, n * m == m * n; STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p; STh_plus_zero_left : forall n:A, 0 + n == n; STh_mult_one_left : forall n:A, 1 * n == n; STh_opp_def : forall n:A, n + - n == 0; STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p; STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}. Variable T : Setoid_Ring_Theory. Let plus_comm := STh_plus_comm T. Let plus_assoc := STh_plus_assoc T. Let mult_comm := STh_mult_comm T. Let mult_assoc := STh_mult_assoc T. Let plus_zero_left := STh_plus_zero_left T. Let mult_one_left := STh_mult_one_left T. Let opp_def := STh_opp_def T. Let distr_left := STh_distr_left T. Let equiv_refl := Seq_refl A Aequiv S. Let equiv_sym := Seq_sym A Aequiv S. Let equiv_trans := Seq_trans A Aequiv S. Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left mult_one_left opp_def distr_left equiv_refl equiv_sym. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p). auto. Qed. Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p). auto. Qed. Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n. auto. Qed. Lemma STh_mult_one_left2 : forall n:A, n == 1 * n. auto. Qed. Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p. auto. Qed. Lemma STh_opp_def2 : forall n:A, 0 == n + - n. auto. Qed. Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p). intros. rewrite (plus_assoc n m p). rewrite (plus_comm n m). rewrite <- (plus_assoc m n p). trivial. Qed. Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p). intros. rewrite (mult_assoc n m p). rewrite (mult_comm n m). rewrite <- (mult_assoc m n p). trivial. Qed. Hint Resolve STh_plus_permute STh_mult_permute. Lemma Saux1 : forall a:A, a + a == a -> a == 0. intros. rewrite <- (plus_zero_left a). rewrite (plus_comm 0 a). setoid_replace (a + 0) with (a + (a + - a)) by auto. rewrite (plus_assoc a a (- a)). rewrite H. apply opp_def. Qed. Lemma STh_mult_zero_left : forall n:A, 0 * n == 0. intros. apply Saux1. rewrite <- (distr_left 0 0 n). rewrite (plus_zero_left 0). trivial. Qed. Hint Resolve STh_mult_zero_left. Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n. auto. Qed. Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z. intros. rewrite <- (plus_zero_left y). rewrite <- H0. rewrite <- (plus_assoc x z y). rewrite (plus_comm z y). rewrite (plus_assoc x y z). rewrite H. auto. Qed. Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y. intros. apply Saux2 with (x * y); auto. rewrite <- (distr_left x (- x) y). rewrite (opp_def x). auto. Qed. Hint Resolve STh_opp_mult_left. Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y). auto. Qed. Lemma STh_mult_zero_right : forall n:A, n * 0 == 0. intro; rewrite (mult_comm n 0); auto. Qed. Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0. intro; rewrite (mult_comm n 0); auto. Qed. Lemma STh_plus_zero_right : forall n:A, n + 0 == n. intro; rewrite (plus_comm n 0); auto. Qed. Lemma STh_plus_zero_right2 : forall n:A, n == n + 0. intro; rewrite (plus_comm n 0); auto. Qed. Lemma STh_mult_one_right : forall n:A, n * 1 == n. intro; rewrite (mult_comm n 1); auto. Qed. Lemma STh_mult_one_right2 : forall n:A, n == n * 1. intro; rewrite (mult_comm n 1); auto. Qed. Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y. intros. rewrite (mult_comm x y). rewrite (mult_comm x (- y)). auto. Qed. Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y). intros. rewrite (mult_comm x y). rewrite (mult_comm x (- y)). auto. Qed. Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y). intros. apply Saux2 with (x + y); auto. rewrite (STh_plus_permute (x + y) (- x) (- y)). rewrite <- (plus_assoc x y (- y)). rewrite (opp_def y); rewrite (STh_plus_zero_right x). rewrite (STh_opp_def2 x); trivial. Qed. Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p). auto. Qed. Lemma STh_opp_opp : forall n:A, - - n == n. intro. apply Saux2 with (- n); auto. rewrite (plus_comm (- n) n); auto. Qed. Hint Resolve STh_opp_opp. Lemma STh_opp_opp2 : forall n:A, n == - - n. auto. Qed. Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y. intros. rewrite (STh_opp_mult_left2 x (- y)). rewrite (STh_opp_mult_right2 x y). trivial. Qed. Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y. intros. apply equiv_sym. apply STh_mult_opp_opp. Qed. Lemma STh_opp_zero : - 0 == 0. rewrite <- (plus_zero_left (- 0)). trivial. Qed. Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p. intros. rewrite <- (plus_zero_left m). rewrite <- (plus_zero_left p). rewrite <- (opp_def n). rewrite (plus_comm n (- n)). rewrite <- (plus_assoc (- n) n m). rewrite <- (plus_assoc (- n) n p). auto. Qed. Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p. intros. apply STh_plus_reg_left with n. rewrite (plus_comm n m); rewrite (plus_comm n p); assumption. Qed. Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p. intros. rewrite (mult_comm n (m + p)). rewrite (mult_comm n m). rewrite (mult_comm n p). trivial. Qed. Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p). intros. apply equiv_sym. apply STh_distr_right. Qed. End Theory_of_setoid_rings. Hint Resolve STh_mult_zero_left STh_plus_reg_left: core. Unset Implicit Arguments. Definition Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory. intros until 1; case H. split; intros; simpl in |- *; eauto. Defined. Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >-> Semi_Setoid_Ring_Theory. Section product_ring. End product_ring. Section power_ring. End power_ring. End Setoid_rings.