Require Import Arith Max Min ZArith_base NArith Nnat. Open Local Scope Z_scope. (** * zify: the Z-ification tactic *) (* This tactic searches for nat and N and positive elements in the goal and translates everything into Z. It is meant as a pre-processor for (r)omega; for instance a positivity hypothesis is added whenever - a multiplication is encountered - an atom is encountered (that is a variable or an unknown construct) Recognized relations (can be handled as deeply as allowed by setoid rewrite): - { eq, le, lt, ge, gt } on { Z, positive, N, nat } Recognized operations: - on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < = - on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat - on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat - on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N *) (** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *) Ltac zify_unop_core t thm a := (* Let's introduce the specification theorem for t *) let H:= fresh "H" in assert (H:=thm a); (* Then we replace (t a) everywhere with a fresh variable *) let z := fresh "z" in set (z:=t a) in *; clearbody z. Ltac zify_unop_var_or_term t thm a := (* If a is a variable, no need for aliasing *) let za := fresh "z" in (rename a into za; rename za into a; zify_unop_core t thm a) || (* Otherwise, a is a complex term: we alias it. *) (remember a as za; zify_unop_core t thm za). Ltac zify_unop t thm a := (* if a is a scalar, we can simply reduce the unop *) let isz := isZcst a in match isz with | true => simpl (t a) in * | _ => zify_unop_var_or_term t thm a end. Ltac zify_unop_nored t thm a := (* in this version, we don't try to reduce the unop (that can be (Zplus x)) *) let isz := isZcst a in match isz with | true => zify_unop_core t thm a | _ => zify_unop_var_or_term t thm a end. Ltac zify_binop t thm a b:= (* works as zify_unop, except that we should be careful when dealing with b, since it can be equal to a *) let isza := isZcst a in match isza with | true => zify_unop (t a) (thm a) b | _ => let za := fresh "z" in (rename a into za; rename za into a; zify_unop_nored (t a) (thm a) b) || (remember a as za; match goal with | H : za = b |- _ => zify_unop_nored (t za) (thm za) za | _ => zify_unop_nored (t za) (thm za) b end) end. Ltac zify_op_1 := match goal with | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a end. Ltac zify_op := repeat zify_op_1. (** II) Conversion from nat to Z *) Definition Z_of_nat' := Z_of_nat. Ltac hide_Z_of_nat t := let z := fresh "z" in set (z:=Z_of_nat t) in *; change Z_of_nat with Z_of_nat' in z; unfold z in *; clear z. Ltac zify_nat_rel := match goal with (* I: equalities *) | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b) | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b) (* II: less than *) | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H | |- (lt ?a ?b) => apply (inj_lt_rev a b) | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b) (* III: less or equal *) | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H | |- (le ?a ?b) => apply (inj_le_rev a b) | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b) (* IV: greater than *) | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H | |- (gt ?a ?b) => apply (inj_gt_rev a b) | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b) (* V: greater or equal *) | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H | |- (ge ?a ?b) => apply (inj_ge_rev a b) | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b) end. Ltac zify_nat_op := match goal with (* misc type conversions: positive/N/Z to nat *) | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a) | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a) (* plus -> Zplus *) | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b) (* min -> Zmin *) | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b) (* max -> Zmax *) | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b) (* minus -> Zmax (Zminus ... ...) 0 *) | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b) (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *) | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a) (* mult -> Zmult and a positivity hypothesis *) | H : context [ Z_of_nat (mult ?a ?b) ] |- _ => let H:= fresh "H" in assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * | |- context [ Z_of_nat (mult ?a ?b) ] => let H:= fresh "H" in assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * (* O -> Z0 *) | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H | |- context [ Z_of_nat O ] => simpl (Z_of_nat O) (* S -> number or Zsucc *) | H : context [ Z_of_nat (S ?a) ] |- _ => let isnat := isnatcst a in match isnat with | true => simpl (Z_of_nat (S a)) in H | _ => rewrite (inj_S a) in H end | |- context [ Z_of_nat (S ?a) ] => let isnat := isnatcst a in match isnat with | true => simpl (Z_of_nat (S a)) | _ => rewrite (inj_S a) end (* atoms of type nat : we add a positivity condition (if not already there) *) | H : context [ Z_of_nat ?a ] |- _ => match goal with | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a | H' : 0 <= Z_of_nat' a |- _ => fail | _ => let H:= fresh "H" in assert (H:=Zle_0_nat a); hide_Z_of_nat a end | |- context [ Z_of_nat ?a ] => match goal with | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a | H' : 0 <= Z_of_nat' a |- _ => fail | _ => let H:= fresh "H" in assert (H:=Zle_0_nat a); hide_Z_of_nat a end end. Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *. (* III) conversion from positive to Z *) Definition Zpos' := Zpos. Definition Zneg' := Zneg. Ltac hide_Zpos t := let z := fresh "z" in set (z:=Zpos t) in *; change Zpos with Zpos' in z; unfold z in *; clear z. Ltac zify_positive_rel := match goal with (* I: equalities *) | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b) | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b) (* II: less than *) | H : context [ (?a change (a change (a change (a<=b)%positive with (Zpos a<=Zpos b) in H | |- context [ (?a<=?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b) (* IV: greater than *) | H : context [ (?a>?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H | |- context [ (?a>?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b) (* V: greater or equal *) | H : context [ (?a>=?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H | |- context [ (?a>=?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b) end. Ltac zify_positive_op := match goal with (* Zneg -> -Zpos (except for numbers) *) | H : context [ Zneg ?a ] |- _ => let isp := isPcst a in match isp with | true => change (Zneg a) with (Zneg' a) in H | _ => change (Zneg a) with (- Zpos a) in H end | |- context [ Zneg ?a ] => let isp := isPcst a in match isp with | true => change (Zneg a) with (Zneg' a) | _ => change (Zneg a) with (- Zpos a) end (* misc type conversions: nat to positive *) | H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) (* Pplus -> Zplus *) | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) (* Pmin -> Zmin *) | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b) (* Pmax -> Zmax *) | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b) (* Pminus -> Zmax 1 (Zminus ... ...) *) | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b) (* Psucc -> Zsucc *) | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a) (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *) | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a) (* Pmult -> Zmult and a positivity hypothesis *) | H : context [ Zpos (Pmult ?a ?b) ] |- _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * | |- context [ Zpos (Pmult ?a ?b) ] => let H:= fresh "H" in assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * (* xO *) | H : context [ Zpos (xO ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) in H | _ => rewrite (Zpos_xO a) in H end | |- context [ Zpos (xO ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) | _ => rewrite (Zpos_xO a) end (* xI *) | H : context [ Zpos (xI ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) in H | _ => rewrite (Zpos_xI a) in H end | |- context [ Zpos (xI ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) | _ => rewrite (Zpos_xI a) end (* xI : nothing to do, just prevent adding a useless positivity condition *) | H : context [ Zpos xH ] |- _ => hide_Zpos xH | |- context [ Zpos xH ] => hide_Zpos xH (* atoms of type positive : we add a positivity condition (if not already there) *) | H : context [ Zpos ?a ] |- _ => match goal with | H' : Zpos a > 0 |- _ => hide_Zpos a | H' : Zpos' a > 0 |- _ => fail | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a end | |- context [ Zpos ?a ] => match goal with | H' : Zpos a > 0 |- _ => hide_Zpos a | H' : Zpos' a > 0 |- _ => fail | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a end end. Ltac zify_positive := repeat zify_positive_rel; repeat zify_positive_op; unfold Zpos',Zneg' in *. (* IV) conversion from N to Z *) Definition Z_of_N' := Z_of_N. Ltac hide_Z_of_N t := let z := fresh "z" in set (z:=Z_of_N t) in *; change Z_of_N with Z_of_N' in z; unfold z in *; clear z. Ltac zify_N_rel := match goal with (* I: equalities *) | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b) | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b) (* II: less than *) | H : (?a generalize (Z_of_N_lt _ _ H); clear H; intro H | |- (?a apply (Z_of_N_lt_rev a b) | H : context [ (?a rewrite (Z_of_N_lt_iff a b) in H | |- context [ (?a rewrite (Z_of_N_lt_iff a b) (* III: less or equal *) | H : (?a<=?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H | |- (?a<=?b)%N => apply (Z_of_N_le_rev a b) | H : context [ (?a<=?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H | |- context [ (?a<=?b)%N ] => rewrite (Z_of_N_le_iff a b) (* IV: greater than *) | H : (?a>?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H | |- (?a>?b)%N => apply (Z_of_N_gt_rev a b) | H : context [ (?a>?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H | |- context [ (?a>?b)%N ] => rewrite (Z_of_N_gt_iff a b) (* V: greater or equal *) | H : (?a>=?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H | |- (?a>=?b)%N => apply (Z_of_N_ge_rev a b) | H : context [ (?a>=?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H | |- context [ (?a>=?b)%N ] => rewrite (Z_of_N_ge_iff a b) end. Ltac zify_N_op := match goal with (* misc type conversions: nat to positive *) | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a) | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a) | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a) | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0 (* Nplus -> Zplus *) | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b) (* Nmin -> Zmin *) | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b) (* Nmax -> Zmax *) | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b) (* Nminus -> Zmax 0 (Zminus ... ...) *) | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b) (* Nsucc -> Zsucc *) | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a) (* Nmult -> Zmult and a positivity hypothesis *) | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * | |- context [ Z_of_N (Nmult ?a ?b) ] => let H:= fresh "H" in assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * (* atoms of type N : we add a positivity condition (if not already there) *) | H : context [ Z_of_N ?a ] |- _ => match goal with | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a | H' : 0 <= Z_of_N' a |- _ => fail | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a end | |- context [ Z_of_N ?a ] => match goal with | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a | H' : 0 <= Z_of_N' a |- _ => fail | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a end end. Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *. (** The complete Z-ification tactic *) Ltac zify := repeat progress (zify_nat; zify_positive; zify_N); zify_op.