(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* x = y. intros x y H; replace x with ((x - y) + y); [rewrite H | idtac]; ring. Qed. Lemma psos_r1: forall x y, x = y -> x - y = 0. intros x y H; rewrite H; ring. Qed. Lemma nsatzR_not1: forall x y:R, x<>y -> exists z:R, z*(x-y)-1=0. intros. exists (1/(x-y)). field. unfold not. unfold not in H. intros. apply H. replace x with ((x-y)+y). rewrite H0. ring. ring. Qed. Lemma nsatzR_not1_0: forall x:R, x<>0 -> exists z:R, z*x-1=0. intros. exists (1/(x)). field. auto. Qed. Ltac equalities_to_goal := lazymatch goal with | H: (@eq R ?x 0) |- _ => try revert H | H: (@eq R 0 ?x) |- _ => try generalize (sym_equal H); clear H | H: (@eq R ?x ?y) |- _ => try generalize (psos_r1 _ _ H); clear H end. Lemma nsatzR_not2: 1<>0. auto with *. Qed. Lemma nsatzR_diff: forall x y:R, x<>y -> x-y<>0. intros. intro; apply H. replace x with (x-y+y) by ring. rewrite H0; ring. Qed. (* Removes x<>0 from hypothesis *) Ltac nsatzR_not_hyp:= match goal with | H: ?x<>?y |- _ => match y with |0 => let H1:=fresh "Hnsatz" in let y:=fresh "x" in destruct (@nsatzR_not1_0 _ H) as (y,H1); clear H |_ => generalize (@nsatzR_diff _ _ H); clear H; intro end end. Ltac nsatzR_not_goal := match goal with | |- ?x<>?y :> R => red; intro; apply nsatzR_not2 | |- False => apply nsatzR_not2 end. Ltac nsatzR_begin := intros; repeat nsatzR_not_hyp; try nsatzR_not_goal; try apply psos_r1b; repeat equalities_to_goal. (* code de Benjamin *) Definition PolZ := Pol Z. Definition PEZ := PExpr Z. Definition P0Z : PolZ := @P0 Z 0%Z. Definition PolZadd : PolZ -> PolZ -> PolZ := @Padd Z 0%Z Zplus Zeq_bool. Definition PolZmul : PolZ -> PolZ -> PolZ := @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool. Definition PolZeq := @Peq Z Zeq_bool. Definition norm := @norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool. Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ := match la, lp with | a::la, p::lp => PolZadd (PolZmul (norm a) p) (mult_l la lp) | _, _ => P0Z end. Fixpoint compute_list (lla: list (list PEZ)) (lp:list PolZ) := match lla with | List.nil => lp | la::lla => compute_list lla ((mult_l la lp)::lp) end. Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) := let (lla, lq) := certif in let lp := List.map norm lpe in PolZeq (norm qe) (mult_l lq (compute_list lla lp)). (* Correction *) Definition PhiR : list R -> PolZ -> R := (Pphi 0 Rplus Rmult (gen_phiZ 0 1 Rplus Rmult Ropp)). Definition PEevalR : list R -> PEZ -> R := PEeval 0 Rplus Rmult Rminus Ropp (gen_phiZ 0 1 Rplus Rmult Ropp) Nnat.nat_of_N pow. Lemma P0Z_correct : forall l, PhiR l P0Z = 0. Proof. trivial. Qed. Lemma PolZadd_correct : forall P' P l, PhiR l (PolZadd P P') = (PhiR l P + PhiR l P'). Proof. refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (F_R Rfield)) (gen_phiZ_morph Rset Rext (F_R Rfield))). Qed. Lemma PolZmul_correct : forall P P' l, PhiR l (PolZmul P P') = (PhiR l P * PhiR l P'). Proof. refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (F_R Rfield)) (gen_phiZ_morph Rset Rext (F_R Rfield))). Qed. Lemma norm_correct : forall (l : list R) (pe : PEZ), PEevalR l pe = PhiR l (norm pe). Proof. intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (F_R Rfield)) (gen_phiZ_morph Rset Rext (F_R Rfield)) R_power_theory) with (lmp:= List.nil). compute;trivial. Qed. Lemma PolZeq_correct : forall P P' l, PolZeq P P' = true -> PhiR l P = PhiR l P'. Proof. intros;apply (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (F_R Rfield)));trivial. Qed. Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop := match l with | List.nil => True | a::l => Interp a = 0 /\ Cond0 A Interp l end. Lemma mult_l_correct : forall l la lp, Cond0 PolZ (PhiR l) lp -> PhiR l (mult_l la lp) = 0. Proof. induction la;simpl;intros;trivial. destruct lp;trivial. simpl in H;destruct H. rewrite PolZadd_correct, PolZmul_correct, H, IHla;[ring | trivial]. Qed. Lemma compute_list_correct : forall l lla lp, Cond0 PolZ (PhiR l) lp -> Cond0 PolZ (PhiR l) (compute_list lla lp). Proof. induction lla;simpl;intros;trivial. apply IHlla;simpl;split;trivial. apply mult_l_correct;trivial. Qed. Lemma check_correct : forall l lpe qe certif, check lpe qe certif = true -> Cond0 PEZ (PEevalR l) lpe -> PEevalR l qe = 0. Proof. unfold check;intros l lpe qe (lla, lq) H2 H1. apply PolZeq_correct with (l:=l) in H2. rewrite norm_correct, H2. apply mult_l_correct. apply compute_list_correct. clear H2 lq lla qe;induction lpe;simpl;trivial. simpl in H1;destruct H1. rewrite <- norm_correct;auto. Qed. (* fin du code de Benjamin *) Lemma nsatzR_l3:forall c p r, ~c=0 -> c*p^r=0 -> p=0. intros. elim (Rmult_integral _ _ H0);intros. absurd (c=0);auto. clear H0; induction r; simpl in *. contradict H1; discrR. elim (Rmult_integral _ _ H1); auto. Qed. Ltac generalise_eq_hyps:= repeat (match goal with |h : (?p = ?q)|- _ => revert h end). Ltac lpol_goal t := match t with | ?a = 0 -> ?b => let r:= lpol_goal b in constr:(a::r) | ?a = 0 => constr:(a::nil) end. Fixpoint IPR p {struct p}: R := match p with xH => 1 | xO xH => 1 + 1 | xO p1 => 2 * (IPR p1) | xI xH => 1 + (1 + 1) | xI p1 => 1 + 2 * (IPR p1) end. Definition IZR1 z := match z with Z0 => 0 | Zpos p => IPR p | Zneg p => -(IPR p) end. Fixpoint interpret3 t fv {struct t}: R := match t with | (PEadd t1 t2) => let v1 := interpret3 t1 fv in let v2 := interpret3 t2 fv in (v1 + v2) | (PEmul t1 t2) => let v1 := interpret3 t1 fv in let v2 := interpret3 t2 fv in (v1 * v2) | (PEsub t1 t2) => let v1 := interpret3 t1 fv in let v2 := interpret3 t2 fv in (v1 - v2) | (PEopp t1) => let v1 := interpret3 t1 fv in (-v1) | (PEpow t1 t2) => let v1 := interpret3 t1 fv in v1 ^(Nnat.nat_of_N t2) | (PEc t1) => (IZR1 t1) | (PEX n) => List.nth (pred (nat_of_P n)) fv 0 end. (* lp est incluse dans fv. La met en tete. *) Ltac parametres_en_tete fv lp := match fv with | (@nil _) => lp | (@cons _ ?x ?fv1) => let res := AddFvTail x lp in parametres_en_tete fv1 res end. Ltac append1 a l := match l with | (@nil _) => constr:(cons a l) | (cons ?x ?l) => let l' := append1 a l in constr:(cons x l') end. Ltac rev l := match l with |(@nil _) => l | (cons ?x ?l) => let l' := rev l in append1 x l' end. Ltac nsatz_call_n info nparam p rr lp kont := nsatz_compute (PEc info :: PEc nparam :: PEpow p rr :: lp); match goal with | |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ => intros _; set (lci:=lci0); set (lq:=lq0); kont c rr lq lci end. Ltac nsatz_call radicalmax info nparam p lp kont := let rec try_n n := lazymatch n with | 0%N => fail | _ => (* idtac "Trying power: " n;*) (let r := eval compute in (Nminus radicalmax (Npred n)) in nsatz_call_n info nparam p r lp kont) || let n' := eval compute in (Npred n) in try_n n' end in try_n radicalmax. Ltac nsatzR_gen radicalmax info lparam lvar n RNG lH _rl := get_Pre RNG (); let mkFV := Ring_tac.get_RingFV RNG in let mkPol := Ring_tac.get_RingMeta RNG in generalise_eq_hyps; let t := Get_goal in let lpol := lpol_goal t in intros; let fv := match lvar with | nil => let fv1 := FV_hypo_tac mkFV ltac:(get_Eq RNG) lH in let fv1 := list_fold_right mkFV fv1 lpol in rev fv1 (* heuristique: les dernieres variables auront le poid le plus fort *) | _ => lvar end in check_fv fv; (*idtac "variables:";idtac fv;*) let nparam := eval compute in (Z_of_nat (List.length lparam)) in let fv := parametres_en_tete fv lparam in idtac "variables:"; idtac fv; (* idtac "nparam:"; idtac nparam;*) let lpol := list_fold_right ltac:(fun p l => let p' := mkPol p fv in constr:(p'::l)) (@nil (PExpr Z)) lpol in let lpol := eval compute in (List.rev lpol) in (*idtac lpol;*) let SplitPolyList kont := match lpol with | ?p2::?lp2 => kont p2 lp2 | _ => idtac "polynomial not in the ideal" end in SplitPolyList ltac:(fun p lp => set (p21:=p) ; set (lp21:=lp); nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci => set (q := PEmul c (PEpow p21 r)); let Hg := fresh "Hg" in assert (Hg:check lp21 q (lci,lq) = true); [ (vm_compute;reflexivity) || idtac "invalid nsatz certificate" | let Hg2 := fresh "Hg" in assert (Hg2: interpret3 q fv = 0); [ simpl; apply (@check_correct fv lp21 q (lci,lq) Hg); simpl; repeat (split;[assumption|idtac]); exact I | simpl in Hg2; simpl; apply nsatzR_l3 with (interpret3 c fv) (Nnat.nat_of_N r);simpl; [ discrR || idtac "could not prove discrimination result" | exact Hg2] ] ])). Ltac nsatzRpv radicalmax info lparam lvar:= nsatzR_begin; intros; let G := Get_goal in ring_lookup (PackRing ltac:(nsatzR_gen radicalmax info lparam lvar ring_subst_niter)) [] G. Ltac nsatzR := nsatzRpv 6%N 1%Z (@nil R) (@nil R). Ltac nsatzRradical radicalmax := nsatzRpv radicalmax 1%Z (@nil R) (@nil R). Ltac nsatzRparameters lparam := nsatzRpv 6%N 1%Z lparam (@nil R). Tactic Notation "nsatz" := nsatzR. Tactic Notation "nsatz" "with" "lexico" := nsatzRpv 6%N 2%Z (@nil R) (@nil R). Tactic Notation "nsatz" "with" "lexico" "sugar":= nsatzRpv 6%N 3%Z (@nil R) (@nil R). Tactic Notation "nsatz" "without" "sugar":= nsatzRpv 6%N 0%Z (@nil R) (@nil R).