(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ) = add_num let (<->) = minus_num let (<*>) = mult_num type var = Mc.positive module Monomial : sig type t val const : t val var : var -> t val find : var -> t -> int val mult : var -> t -> t val prod : t -> t -> t val compare : t -> t -> int val pp : out_channel -> t -> unit val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a end = struct (* A monomial is represented by a multiset of variables *) module Map = Map.Make(struct type t = var let compare = Pervasives.compare end) open Map type t = int Map.t (* The monomial that corresponds to a constant *) let const = Map.empty (* The monomial 'x' *) let var x = Map.add x 1 Map.empty (* Get the degre of a variable in a monomial *) let find x m = try find x m with Not_found -> 0 (* Multiply a monomial by a variable *) let mult x m = add x ( (find x m) + 1) m (* Product of monomials *) let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2 (* Total ordering of monomials *) let compare m1 m2 = Map.compare Pervasives.compare m1 m2 let pp o m = Map.iter (fun k v -> if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k) else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m let fold = fold end module Poly : (* A polynomial is a map of monomials *) (* This is probably a naive implementation (expected to be fast enough - Coq is probably the bottleneck) *The new ring contribution is using a sparse Horner representation. *) sig type t val get : Monomial.t -> t -> num val variable : var -> t val add : Monomial.t -> num -> t -> t val constant : num -> t val mult : Monomial.t -> num -> t -> t val product : t -> t -> t val addition : t -> t -> t val uminus : t -> t val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a val pp : out_channel -> t -> unit val compare : t -> t -> int val is_null : t -> bool end = struct (*normalisation bug : 0*x ... *) module P = Map.Make(Monomial) open P type t = num P.t let pp o p = P.iter (fun k v -> if compare_num v (Int 0) <> 0 then if Monomial.compare Monomial.const k = 0 then Printf.fprintf o "%s " (string_of_num v) else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p (* Get the coefficient of monomial mn *) let get : Monomial.t -> t -> num = fun mn p -> try find mn p with Not_found -> (Int 0) (* The polynomial 1.x *) let variable : var -> t = fun x -> add (Monomial.var x) (Int 1) empty (*The constant polynomial *) let constant : num -> t = fun c -> add (Monomial.const) c empty (* The addition of a monomial *) let add : Monomial.t -> num -> t -> t = fun mn v p -> let vl = (get mn p) <+> v in add mn vl p (** Design choice: empty is not a polynomial I do not remember why .... **) (* The product by a monomial *) let mult : Monomial.t -> num -> t -> t = fun mn v p -> fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty let addition : t -> t -> t = fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2 let product : t -> t -> t = fun p1 p2 -> fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty let uminus : t -> t = fun p -> map (fun v -> minus_num v) p let fold = P.fold let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true let compare = compare compare_num end open Mutils type 'a number_spec = { bigint_to_number : big_int -> 'a; number_to_num : 'a -> num; zero : 'a; unit : 'a; mult : 'a -> 'a -> 'a; eqb : 'a -> 'a -> bool } let z_spec = { bigint_to_number = Ml2C.bigint ; number_to_num = (fun x -> Big_int (C2Ml.z_big_int x)); zero = Mc.Z0; unit = Mc.Zpos Mc.XH; mult = Mc.zmult; eqb = Mc.zeq_bool } let q_spec = { bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH}); number_to_num = C2Ml.q_to_num; zero = {Mc.qnum = Mc.Z0;Mc.qden = Mc.XH}; unit = {Mc.qnum = (Mc.Zpos Mc.XH) ; Mc.qden = Mc.XH}; mult = Mc.qmult; eqb = Mc.qeq_bool } let r_spec = z_spec let dev_form n_spec p = let rec dev_form p = match p with | Mc.PEc z -> Poly.constant (n_spec.number_to_num z) | Mc.PEX v -> Poly.variable v | Mc.PEmul(p1,p2) -> let p1 = dev_form p1 in let p2 = dev_form p2 in Poly.product p1 p2 | Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2) | Mc.PEopp p -> Poly.uminus (dev_form p) | Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2)) | Mc.PEpow(p,n) -> let p = dev_form p in let n = C2Ml.n n in let rec pow n = if n = 0 then Poly.constant (n_spec.number_to_num n_spec.unit) else Poly.product p (pow (n-1)) in pow n in dev_form p let monomial_to_polynomial mn = Monomial.fold (fun v i acc -> let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in if acc = Mc.PEc (Mc.Zpos Mc.XH) then mn else Mc.PEmul(mn,acc)) mn (Mc.PEc (Mc.Zpos Mc.XH)) let list_to_polynomial vars l = assert (List.for_all (fun x -> ceiling_num x =/ x) l); let var x = monomial_to_polynomial (List.nth vars x) in let rec xtopoly p i = function | [] -> p | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l else let c = Mc.PEc (Ml2C.bigint (numerator c)) in let mn = if c = Mc.PEc (Mc.Zpos Mc.XH) then var i else Mc.PEmul (c,var i) in let p' = if p = Mc.PEc Mc.Z0 then mn else Mc.PEadd (mn, p) in xtopoly p' (i+1) l in xtopoly (Mc.PEc Mc.Z0) 0 l let rec fixpoint f x = let y' = f x in if y' = x then y' else fixpoint f y' let rec_simpl_cone n_spec e = let simpl_cone = Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in let rec rec_simpl_cone = function | Mc.PsatzMulE(t1, t2) -> simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2)) | Mc.PsatzAdd(t1,t2) -> simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2)) | x -> simpl_cone x in rec_simpl_cone e let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c type cone_prod = Const of cone | Ideal of cone *cone | Mult of cone * cone | Other of cone and cone = Mc.zWitness let factorise_linear_cone c = let rec cone_list c l = match c with | Mc.PsatzAdd (x,r) -> cone_list r (x::l) | _ -> c :: l in let factorise c1 c2 = match c1 , c2 with | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') -> if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') -> if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None | _ -> None in let rec rebuild_cone l pending = match l with | [] -> (match pending with | None -> Mc.PsatzZ | Some p -> p ) | e::l -> (match pending with | None -> rebuild_cone l (Some e) | Some p -> (match factorise p e with | None -> Mc.PsatzAdd(p, rebuild_cone l (Some e)) | Some f -> rebuild_cone l (Some f) ) ) in (rebuild_cone (List.sort Pervasives.compare (cone_list c [])) None) (* The binding with Fourier might be a bit obsolete -- how does it handle equalities ? *) (* Certificates are elements of the cone such that P = 0 *) (* To begin with, we search for certificates of the form: a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0 where pi >= 0 qi > 0 ai >= 0 bi >= 0 Sum bi + c >= 1 This is a linear problem: each monomial is considered as a variable. Hence, we can use fourier. The variable c is at index 0 *) open Mfourier (*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*) (*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*) (*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*) (*module Vect = Fourier.Vect*) (*open Fourier.Cstr*) (* fold_left followed by a rev ! *) let constrain_monomial mn l = let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in if mn = Monomial.const then { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ; op = Eq ; cst = Big_int zero_big_int } else { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ; op = Eq ; cst = Big_int zero_big_int } let positivity l = let rec xpositivity i l = match l with | [] -> [] | (_,Mc.Equal)::l -> xpositivity (i+1) l | (_,_)::l -> {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ; op = Ge ; cst = Int 0 } :: (xpositivity (i+1) l) in xpositivity 0 l let string_of_op = function | Mc.Strict -> "> 0" | Mc.NonStrict -> ">= 0" | Mc.Equal -> "= 0" | Mc.NonEqual -> "<> 0" (* If the certificate includes at least one strict inequality, the obtained polynomial can also be 0 *) let build_linear_system l = (* Gather the monomials: HINT add up of the polynomials *) let l' = List.map fst l in let monomials = List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l' in (* For each monomial, compute a constraint *) let s0 = Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in (* I need at least something strictly positive *) let strict = { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.map (fun (x,y) -> match y with Mc.Strict -> Big_int unit_big_int | _ -> Big_int zero_big_int) l)); op = Ge ; cst = Big_int unit_big_int } in (* Add the positivity constraint *) {coeffs = Vect.from_list ([Big_int unit_big_int]) ; op = Ge ; cst = Big_int zero_big_int}::(strict::(positivity l)@s0) let big_int_to_z = Ml2C.bigint (* For Q, this is a pity that the certificate has been scaled -- at a lower layer, certificates are using nums... *) let make_certificate n_spec (cert,li) = let bint_to_cst = n_spec.bigint_to_number in match cert with | [] -> failwith "empty_certificate" | e::cert' -> let cst = match compare_big_int e zero_big_int with | 0 -> Mc.PsatzZ | 1 -> Mc.PsatzC (bint_to_cst e) | _ -> failwith "positivity error" in let rec scalar_product cert l = match cert with | [] -> Mc.PsatzZ | c::cert -> match l with | [] -> failwith "make_certificate(1)" | i::l -> let r = scalar_product cert l in match compare_big_int c zero_big_int with | -1 -> Mc.PsatzAdd ( Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)), r) | 0 -> r | _ -> Mc.PsatzAdd ( Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)), r) in ((factorise_linear_cone (simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li))))) exception Found of Monomial.t exception Strict let primal l = let vr = ref 0 in let module Mmn = Map.Make(Monomial) in let vect_of_poly map p = Poly.fold (fun mn vl (map,vect) -> if mn = Monomial.const then (map,vect) else let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in (m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in let cmp x y = Pervasives.compare (fst x) (fst y) in snd (List.fold_right (fun (p,op) (map,l) -> let (mp,vect) = vect_of_poly map p in let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in (mp,cstr::l)) l (Mmn.empty,[])) let dual_raw_certificate (l: (Poly.t * Mc.op1) list) = (* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *) let sys = build_linear_system l in try match Fourier.find_point sys with | Inr _ -> None | Inl cert -> Some (rats_to_ints (Vect.to_list cert)) (* should not use rats_to_ints *) with x -> if debug then (Printf.printf "raw certificate %s" (Printexc.to_string x); flush stdout) ; None let raw_certificate l = try let p = primal l in match Fourier.find_point p with | Inr prf -> if debug then Printf.printf "AProof : %a\n" pp_proof prf ; let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ; Some (rats_to_ints (Vect.to_list cert)) | Inl _ -> None with Strict -> (* Fourier elimination should handle > *) dual_raw_certificate l let simple_linear_prover (*to_constant*) l = let (lc,li) = List.split l in match raw_certificate lc with | None -> None (* No certificate *) | Some cert -> (* make_certificate to_constant*)Some (cert,li) let linear_prover n_spec l = let li = List.combine l (interval 0 (List.length l -1)) in let (l1,l') = List.partition (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in let l' = List.map (fun ((x,y),i) -> match y with Mc.NonEqual -> failwith "cannot happen" | y -> ((dev_form n_spec x, y),i)) l' in simple_linear_prover (*n_spec*) l' let linear_prover n_spec l = try linear_prover n_spec l with x -> (print_string (Printexc.to_string x); None) let linear_prover_with_cert spec l = match linear_prover spec l with | None -> None | Some cert -> Some (make_certificate spec cert) (* zprover.... *) (* I need to gather the set of variables ---> Then go for fold Once I have an interval, I need a certificate : 2 other fourier elims. (I could probably get the certificate directly as it is done in the fourier contrib.) *) let make_linear_system l = let l' = List.map fst l in let monomials = List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l' in let monomials = Poly.fold (fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in (List.map (fun (c,op) -> {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ; op = op ; cst = minus_num ( (Poly.get Monomial.const c))}) l ,monomials) let pplus x y = Mc.PEadd(x,y) let pmult x y = Mc.PEmul(x,y) let pconst x = Mc.PEc x let popp x = Mc.PEopp x let debug = false (* keep track of enumerated vectors *) let rec mem p x l = match l with [] -> false | e::l -> if p x e then true else mem p x l let rec remove_assoc p x l = match l with [] -> [] | e::l -> if p x (fst e) then remove_assoc p x l else e::(remove_assoc p x l) let eq x y = Vect.compare x y = 0 let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l (* The prover is (probably) incomplete -- only searching for naive cutting planes *) let candidates sys = let ll = List.fold_right ( fun (e,k) r -> match k with | Mc.NonStrict -> (dev_form z_spec e , Ge)::r | Mc.Equal -> (dev_form z_spec e , Eq)::r (* we already know the bound -- don't compute it again *) | _ -> failwith "Cannot happen candidates") sys [] in let (sys,var_mn) = make_linear_system ll in let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in (List.fold_left (fun l cstr -> let gcd = Big_int (Vect.gcd cstr.coeffs) in if gcd =/ (Int 1) && cstr.op = Eq then l else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars let rec xzlinear_prover planes sys = match linear_prover z_spec sys with | Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof)) | None -> (* find the candidate with the smallest range *) (* Grrr - linear_prover is also calling 'make_linear_system' *) let ll = List.fold_right (fun (e,k) r -> match k with Mc.NonEqual -> r | k -> (dev_form z_spec e , match k with Mc.NonStrict -> Ge | Mc.Equal -> Eq | Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in let (ll,var) = make_linear_system ll in let candidates = List.fold_left (fun acc vect -> match Fourier.optimise vect ll with | None -> acc | Some i -> (* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *) flush stdout ; (vect,i) ::acc) [] planes in let smallest_interval = match List.fold_left (fun (x1,i1) (x2,i2) -> if Itv.smaller_itv i1 i2 then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates with | (x,(Some i, Some j)) -> Some(i,x,j) | x -> None (* This might be a cutting plane *) in match smallest_interval with | Some (lb,e,ub) -> let (lbn,lbd) = (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int), Ml2C.bigint (denominator lb)) in let (ubn,ubd) = (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) , Ml2C.bigint (denominator ub)) in let expr = list_to_polynomial var (Vect.to_list e) in (match (*x <= ub -> x > ub *) linear_prover z_spec ((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)), Mc.NonStrict) :: sys), (* lb <= x -> lb > x *) linear_prover z_spec ((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn), Mc.NonStrict)::sys) with | Some cub , Some clb -> (match zlinear_enum (remove e planes) expr (ceiling_num lb) (floor_num ub) sys with | None -> None | Some prf -> let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf))) | _ -> None ) | _ -> None and zlinear_enum planes expr clb cub l = if clb >/ cub then Some [] else let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in let sys' = (pexpr, Mc.Equal)::l in (*let enum = *) match xzlinear_prover planes sys' with | None -> if debug then print_string "zlp?"; None | Some prf -> if debug then print_string "zlp!"; match zlinear_enum planes expr (clb +/ (Int 1)) cub l with | None -> None | Some prfl -> Some (prf :: prfl) let zlinear_prover sys = let candidates = candidates sys in (* Printf.printf "candidates %d" (List.length candidates) ; *) (*let t0 = Sys.time () in*) let res = xzlinear_prover candidates sys in (*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res open Sos_types open Mutils let rec scale_term t = match t with | Zero -> unit_big_int , Zero | Const n -> (denominator n) , Const (Big_int (numerator n)) | Var n -> unit_big_int , Var n | Inv _ -> failwith "scale_term : not implemented" | Opp t -> let s, t = scale_term t in s, Opp t | Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in let g = gcd_big_int s1 s2 in let s1' = div_big_int s1 g in let s2' = div_big_int s2 g in let e = mult_big_int g (mult_big_int s1' s2') in if (compare_big_int e unit_big_int) = 0 then (unit_big_int, Add (y1,y2)) else e, Add (Mul(Const (Big_int s2'), y1), Mul (Const (Big_int s1'), y2)) | Sub _ -> failwith "scale term: not implemented" | Mul(y,z) -> let s1,y1 = scale_term y and s2,y2 = scale_term z in mult_big_int s1 s2 , Mul (y1, y2) | Pow(t,n) -> let s,t = scale_term t in power_big_int_positive_int s n , Pow(t,n) | _ -> failwith "scale_term : not implemented" let scale_term t = let (s,t') = scale_term t in s,t' let get_index_of_ith_match f i l = let rec get j res l = match l with | [] -> failwith "bad index" | e::l -> if f e then (if j = i then res else get (j+1) (res+1) l ) else get j (res+1) l in get 0 0 l let rec scale_certificate pos = match pos with | Axiom_eq i -> unit_big_int , Axiom_eq i | Axiom_le i -> unit_big_int , Axiom_le i | Axiom_lt i -> unit_big_int , Axiom_lt i | Monoid l -> unit_big_int , Monoid l | Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n)) | Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n)) | Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n)) | Square t -> let s,t' = scale_term t in mult_big_int s s , Square t' | Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in mult_big_int s1 s2 , Eqmul (y1,y2) | Sum (y, z) -> let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in let g = gcd_big_int s1 s2 in let s1' = div_big_int s1 g in let s2' = div_big_int s2 g in mult_big_int g (mult_big_int s1' s2'), Sum (Product(Rational_le (Big_int s2'), y1), Product (Rational_le (Big_int s1'), y2)) | Product (y, z) -> let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in mult_big_int s1 s2 , Product (y1,y2) open Micromega let rec term_to_q_expr = function | Const n -> PEc (Ml2C.q n) | Zero -> PEc ( Ml2C.q (Int 0)) | Var s -> PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1)))) | Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2) | Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2) | Opp p -> PEopp (term_to_q_expr p) | Pow(t,n) -> PEpow (term_to_q_expr t,Ml2C.n n) | Sub(t1,t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2) | _ -> failwith "term_to_q_expr: not implemented" let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e) let rec product l = match l with | [] -> Mc.PsatzZ | [i] -> Mc.PsatzIn (Ml2C.nat i) | i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l) let q_cert_of_pos pos = let rec _cert_of_pos = function Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> if compare_num n (Int 0) = 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.q n) | Square t -> Mc.PsatzSquare (term_to_q_pol t) | Eqmul (t, y) -> Mc.PsatzMulC(term_to_q_pol t, _cert_of_pos y) | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z) | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in simplify_cone q_spec (_cert_of_pos pos) let rec term_to_z_expr = function | Const n -> PEc (Ml2C.bigint (big_int_of_num n)) | Zero -> PEc ( Z0) | Var s -> PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1)))) | Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2) | Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2) | Opp p -> PEopp (term_to_z_expr p) | Pow(t,n) -> PEpow (term_to_z_expr t,Ml2C.n n) | Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2) | _ -> failwith "term_to_z_expr: not implemented" let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e) let z_cert_of_pos pos = let s,pos = (scale_certificate pos) in let rec _cert_of_pos = function Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> if compare_num n (Int 0) = 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.bigint (big_int_of_num n)) | Square t -> Mc.PsatzSquare (term_to_z_pol t) | Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y) | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z) | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in simplify_cone z_spec (_cert_of_pos pos) (* Local Variables: *) (* coding: utf-8 *) (* End: *)