(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A) -> A -> A := fun (fl : A -> A) (def : A) => match n with | O => def | S m => fl (iter m fl def) end. End Iter. Theorem SSplus_lt : forall p p' : nat, p < S (S (p + p')). intro p; intro p'; change (S p <= S (S (p + p'))); apply le_S; apply Gt.gt_le_S; change (p < S (p + p')); apply Lt.le_lt_n_Sm; apply Plus.le_plus_l. Qed. Theorem Splus_lt : forall p p' : nat, p' < S (p + p'). intro p; intro p'; change (S p' <= S (p + p')); apply Gt.gt_le_S; change (p' < S (p + p')); apply Lt.le_lt_n_Sm; apply Plus.le_plus_r. Qed. Theorem le_lt_SS : forall x y, x <= y -> x < S (S y). intro x; intro y; intro H; change (S x <= S (S y)); apply le_S; apply Gt.gt_le_S; change (x < S y); apply Lt.le_lt_n_Sm; exact H. Qed. Inductive max_type (m n:nat) : Set := cmt : forall v, m <= v -> n <= v -> max_type m n. Definition max : forall m n:nat, max_type m n. intros m n; case (Compare_dec.le_gt_dec m n). intros h; exists n; [exact h | apply le_n]. intros h; exists m; [apply le_n | apply Lt.lt_le_weak; exact h]. Defined.