(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* prefl (Appli (t1,t2)) | _, _ -> {p_lhs=Appli (p1.p_lhs,p2.p_lhs); p_rhs=Appli (p1.p_rhs,p2.p_rhs); p_rule=Congr (p1,p2)} let rec ptrans p1 p3= match p1.p_rule,p3.p_rule with Refl _, _ ->p3 | _, Refl _ ->p1 | Trans(p1,p2), _ ->ptrans p1 (ptrans p2 p3) | Congr(p1,p2), Congr(p3,p4) ->pcongr (ptrans p1 p3) (ptrans p2 p4) | Congr(p1,p2), Trans({p_rule=Congr(p3,p4)},p5) -> ptrans (pcongr (ptrans p1 p3) (ptrans p2 p4)) p5 | _, _ -> if term_equal p1.p_rhs p3.p_lhs then {p_lhs=p1.p_lhs; p_rhs=p3.p_rhs; p_rule=Trans (p1,p3)} else anomaly "invalid cc transitivity" let rec psym p = match p.p_rule with Refl _ -> p | SymAx s -> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Ax s} | Ax s-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=SymAx s} | Inject (p0,c,n,a)-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Inject (psym p0,c,n,a)} | Trans (p1,p2)-> ptrans (psym p2) (psym p1) | Congr (p1,p2)-> pcongr (psym p1) (psym p2) let pax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=l; p_rhs=r; p_rule=Ax s} let psymax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=r; p_rhs=l; p_rule=SymAx s} let rec nth_arg t n= match t with Appli (t1,t2)-> if n>0 then nth_arg t1 (n-1) else t2 | _ -> anomaly "nth_arg: not enough args" let pinject p c n a = {p_lhs=nth_arg p.p_lhs (n-a); p_rhs=nth_arg p.p_rhs (n-a); p_rule=Inject(p,c,n,a)} let build_proof uf= let axioms = axioms uf in let rec equal_proof i j= if i=j then prefl (term uf i) else let (li,lj)=join_path uf i j in ptrans (path_proof i li) (psym (path_proof j lj)) and edge_proof ((i,j),eq)= let pi=equal_proof i eq.lhs in let pj=psym (equal_proof j eq.rhs) in let pij= match eq.rule with Axiom (s,reversed)-> if reversed then psymax axioms s else pax axioms s | Congruence ->congr_proof eq.lhs eq.rhs | Injection (ti,ipac,tj,jpac,k) -> let p=ind_proof ti ipac tj jpac in let cinfo= get_constructor_info uf ipac.cnode in pinject p cinfo.ci_constr cinfo.ci_nhyps k in ptrans (ptrans pi pij) pj and constr_proof i t ipac= if ipac.args=[] then equal_proof i t else let npac=tail_pac ipac in let (j,arg)=subterms uf t in let targ=term uf arg in let rj=find uf j in let u=find_pac uf rj npac in let p=constr_proof j u npac in ptrans (equal_proof i t) (pcongr p (prefl targ)) and path_proof i=function [] -> prefl (term uf i) | x::q->ptrans (path_proof (snd (fst x)) q) (edge_proof x) and congr_proof i j= let (i1,i2) = subterms uf i and (j1,j2) = subterms uf j in pcongr (equal_proof i1 j1) (equal_proof i2 j2) and ind_proof i ipac j jpac= let p=equal_proof i j and p1=constr_proof i i ipac and p2=constr_proof j j jpac in ptrans (psym p1) (ptrans p p2) in function `Prove (i,j) -> equal_proof i j | `Discr (i,ci,j,cj)-> ind_proof i ci j cj