(************************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License. *) (* *) (************************************************************************) (* $Id: predicate.ml,v 1.1.14.1 2004/07/16 19:30:31 herbelin Exp $ *) (* Sets over ordered types *) module type OrderedType = sig type t val compare: t -> t -> int end module type S = sig type elt type t val empty: t val full: t val is_empty: t -> bool val is_full: t -> bool val mem: elt -> t -> bool val singleton: elt -> t val add: elt -> t -> t val remove: elt -> t -> t val union: t -> t -> t val inter: t -> t -> t val diff: t -> t -> t val complement: t -> t val equal: t -> t -> bool val subset: t -> t -> bool val elements: t -> bool * elt list end module Make(Ord: OrderedType) = struct module EltSet = Set.Make(Ord) (* when bool is false, the denoted set is the complement of the given set *) type elt = Ord.t type t = bool * EltSet.t let elements (b,s) = (b, EltSet.elements s) let empty = (false,EltSet.empty) let full = (true,EltSet.empty) (* assumes the set is infinite *) let is_empty (b,s) = not b & EltSet.is_empty s let is_full (b,s) = b & EltSet.is_empty s let mem x (b,s) = if b then not (EltSet.mem x s) else EltSet.mem x s let singleton x = (false,EltSet.singleton x) let add x (b,s) = if b then (b,EltSet.remove x s) else (b,EltSet.add x s) let remove x (b,s) = if b then (b,EltSet.add x s) else (b,EltSet.remove x s) let complement (b,s) = (not b, s) let union s1 s2 = match (s1,s2) with ((false,p1),(false,p2)) -> (false,EltSet.union p1 p2) | ((true,n1),(true,n2)) -> (true,EltSet.inter n1 n2) | ((false,p1),(true,n2)) -> (true,EltSet.diff n2 p1) | ((true,n1),(false,p2)) -> (true,EltSet.diff n1 p2) let inter s1 s2 = complement (union (complement s1) (complement s2)) let diff s1 s2 = inter s1 (complement s2) let subset s1 s2 = match (s1,s2) with ((false,p1),(false,p2)) -> EltSet.subset p1 p2 | ((true,n1),(true,n2)) -> EltSet.subset n2 n1 | ((false,p1),(true,n2)) -> EltSet.is_empty (EltSet.inter p1 n2) | ((true,_),(false,_)) -> false let equal (b1,s1) (b2,s2) = b1=b2 & EltSet.equal s1 s2 end