(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* unit = "coq_set_drawinstr" (******************************************) (* Fonctions en plus du module Obj ********) (******************************************) external offset_closure : Obj.t -> int -> Obj.t = "coq_offset_closure" external offset : Obj.t -> int = "coq_offset" let accu_tag = 0 (*******************************************) (* Initalisation de la machine abstraite ***) (*******************************************) external init_vm : unit -> unit = "init_coq_vm" let _ = init_vm () external transp_values : unit -> bool = "get_coq_transp_value" external set_transp_values : bool -> unit = "coq_set_transp_value" (*******************************************) (* Le code machine ************************) (*******************************************) type tcode let tcode_of_obj v = ((Obj.obj v):tcode) let fun_code v = tcode_of_obj (Obj.field (Obj.repr v) 0) external mkAccuCode : int -> tcode = "coq_makeaccu" external mkPopStopCode : int -> tcode = "coq_pushpop" external mkAccuCond : int -> tcode = "coq_accucond" external offset_tcode : tcode -> int -> tcode = "coq_offset_tcode" external int_tcode : tcode -> int -> int = "coq_int_tcode" external accumulate : unit -> tcode = "accumulate_code" let accumulate = accumulate () external is_accumulate : tcode -> bool = "coq_is_accumulate_code" let popstop_tbl = ref (Array.init 30 mkPopStopCode) let popstop_code i = let len = Array.length !popstop_tbl in if i < len then !popstop_tbl.(i) else begin popstop_tbl := Array.init (i+10) (fun j -> if j < len then !popstop_tbl.(j) else mkPopStopCode j); !popstop_tbl.(i) end let stop = popstop_code 0 (******************************************************) (* Types de donnees abstraites et fonctions associees *) (******************************************************) (* Values of the abstract machine *) let val_of_obj v = ((Obj.obj v):values) let crasy_val = (val_of_obj (Obj.repr 0)) (* Abstract data *) type vprod type vfun type vfix type vcofix type vblock type arguments type vm_env type vstack = values array type vswitch = { sw_type_code : tcode; sw_code : tcode; sw_annot : annot_switch; sw_stk : vstack; sw_env : vm_env } (* Representation des types abstraits: *) (* + Les produits : *) (* - vprod = 0_[ dom | codom] *) (* dom : values, codom : vfun *) (* *) (* + Les fonctions ont deux representations possibles : *) (* - fonction non applique : vf = Ct_[ C | fv1 | ... | fvn] *) (* C:tcode, fvi : values *) (* Remarque : il n'y a pas de difference entre la fct et son *) (* environnement. *) (* - Application partielle : Ct_[Restart:C| vf | arg1 | ... argn] *) (* *) (* + Les points fixes : *) (* - Ct_[C1|Infix_t|C2|...|Infix_t|Cn|fv1|...|fvn] *) (* Remarque il n'y a qu'un seul block pour representer tout les *) (* points fixes d'une declaration mutuelle, chaque point fixe *) (* pointe sur la position de son code dans le block. *) (* - L'application partielle d'un point fixe suit le meme schema *) (* que celui des fonctions *) (* Remarque seul les points fixes qui n'ont pas encore recu leur *) (* argument recursif sont encode de cette maniere (si l'argument *) (* recursif etait un constructeur le point fixe se serait reduit *) (* sinon il est represente par un accumulateur) *) (* *) (* + Les cofix sont expliques dans cbytegen.ml *) (* *) (* + Les vblock encodent les constructeurs (non constant) de caml, *) (* la difference est que leur tag commence a 1 (0 est reserve pour les *) (* accumulateurs : accu_tag) *) (* *) (* + vm_env est le type des environnement machine (une fct ou un pt fixe) *) (* *) (* + Les accumulateurs : At_[accumulate| accu | arg1 | ... | argn ] *) (* - representation des [accu] : tag_[....] *) (* -- tag <= 2 : encodage du type atom *) (* -- 3_[accu|fix_app] : un point fixe bloque par un accu *) (* -- 4_[accu|vswitch] : un case bloque par un accu *) (* -- 5_[fcofix] : une fonction de cofix *) (* -- 6_[fcofix|val] : une fonction de cofix, val represente *) (* la valeur de la reduction de la fct applique a arg1 ... argn *) (* Le type [arguments] est utiliser de maniere abstraite comme un *) (* tableau, il represente la structure de donnee suivante : *) (* tag[ _ | _ |v1|... | vn] *) (* Generalement le 1er champs est un pointeur de code *) (* Ne pas changer ce type sans modifier le code C, *) (* en particulier le fichier "coq_values.h" *) type atom = | Aid of id_key | Aiddef of id_key * values | Aind of inductive (* Les zippers *) type zipper = | Zapp of arguments | Zfix of vfix*arguments (* Peut-etre vide *) | Zswitch of vswitch type stack = zipper list type to_up = values type whd = | Vsort of sorts | Vprod of vprod | Vfun of vfun | Vfix of vfix * arguments option | Vcofix of vcofix * to_up * arguments option | Vconstr_const of int | Vconstr_block of vblock | Vatom_stk of atom * stack (*************************************************) (* Destructors ***********************************) (*************************************************) let rec whd_accu a stk = let stk = if Obj.size a = 2 then stk else Zapp (Obj.obj a) :: stk in let at = Obj.field a 1 in match Obj.tag at with | i when i <= 2 -> Vatom_stk(Obj.magic at, stk) | 3 (* fix_app tag *) -> let fa = Obj.field at 1 in let zfix = Zfix (Obj.obj (Obj.field fa 1), Obj.obj fa) in whd_accu (Obj.field at 0) (zfix :: stk) | 4 (* switch tag *) -> let zswitch = Zswitch (Obj.obj (Obj.field at 1)) in whd_accu (Obj.field at 0) (zswitch :: stk) | 5 (* cofix_tag *) -> begin match stk with | [] -> let vcfx = Obj.obj (Obj.field at 0) in let to_up = Obj.obj a in Vcofix(vcfx, to_up, None) | [Zapp args] -> let vcfx = Obj.obj (Obj.field at 0) in let to_up = Obj.obj a in Vcofix(vcfx, to_up, Some args) | _ -> assert false end | 6 (* cofix_evaluated_tag *) -> begin match stk with | [] -> let vcofix = Obj.obj (Obj.field at 0) in let res = Obj.obj a in Vcofix(vcofix, res, None) | [Zapp args] -> let vcofix = Obj.obj (Obj.field at 0) in let res = Obj.obj a in Vcofix(vcofix, res, Some args) | _ -> assert false end | _ -> assert false external kind_of_closure : Obj.t -> int = "coq_kind_of_closure" let whd_val : values -> whd = fun v -> let o = Obj.repr v in if Obj.is_int o then Vconstr_const (Obj.obj o) else let tag = Obj.tag o in if tag = accu_tag then ( if Obj.size o = 1 then Obj.obj o (* sort *) else if is_accumulate (fun_code o) then whd_accu o [] else (Vprod(Obj.obj o))) else if tag = Obj.closure_tag || tag = Obj.infix_tag then ( match kind_of_closure o with | 0 -> Vfun(Obj.obj o) | 1 -> Vfix(Obj.obj o, None) | 2 -> Vfix(Obj.obj (Obj.field o 1), Some (Obj.obj o)) | 3 -> Vatom_stk(Aid(RelKey(int_tcode (fun_code o) 1)), []) | _ -> Util.anomaly "Vm.whd : kind_of_closure does not work") else Vconstr_block(Obj.obj o) (************************************************) (* La machine abstraite *************************) (************************************************) (* gestion de la pile *) external push_ra : tcode -> unit = "coq_push_ra" external push_val : values -> unit = "coq_push_val" external push_arguments : arguments -> unit = "coq_push_arguments" external push_vstack : vstack -> unit = "coq_push_vstack" (* interpreteur *) external interprete : tcode -> values -> vm_env -> int -> values = "coq_interprete_ml" (* Functions over arguments *) let nargs : arguments -> int = fun args -> (Obj.size (Obj.repr args)) - 2 let arg args i = if 0 <= i && i < (nargs args) then val_of_obj (Obj.field (Obj.repr args) (i+2)) else raise (Invalid_argument ("Vm.arg size = "^(string_of_int (nargs args))^ " acces "^(string_of_int i))) let apply_arguments vf vargs = let n = nargs vargs in if n = 0 then vf else begin push_ra stop; push_arguments vargs; interprete (fun_code vf) vf (Obj.magic vf) (n - 1) end let apply_vstack vf vstk = let n = Array.length vstk in if n = 0 then vf else begin push_ra stop; push_vstack vstk; interprete (fun_code vf) vf (Obj.magic vf) (n - 1) end (**********************************************) (* Constructeurs ******************************) (**********************************************) let obj_of_atom : atom -> Obj.t = fun a -> let res = Obj.new_block accu_tag 2 in Obj.set_field res 0 (Obj.repr accumulate); Obj.set_field res 1 (Obj.repr a); res (* obj_of_str_const : structured_constant -> Obj.t *) let rec obj_of_str_const str = match str with | Const_sorts s -> Obj.repr (Vsort s) | Const_ind ind -> obj_of_atom (Aind ind) | Const_b0 tag -> Obj.repr tag | Const_bn(tag, args) -> let len = Array.length args in let res = Obj.new_block tag len in for i = 0 to len - 1 do Obj.set_field res i (obj_of_str_const args.(i)) done; res let val_of_obj o = ((Obj.obj o) : values) let val_of_str_const str = val_of_obj (obj_of_str_const str) let val_of_atom a = val_of_obj (obj_of_atom a) let idkey_tbl = Hashtbl.create 31 let val_of_idkey key = try Hashtbl.find idkey_tbl key with Not_found -> let v = val_of_atom (Aid key) in Hashtbl.add idkey_tbl key v; v let val_of_rel k = val_of_idkey (RelKey k) let val_of_rel_def k v = val_of_atom(Aiddef(RelKey k, v)) let val_of_named id = val_of_idkey (VarKey id) let val_of_named_def id v = val_of_atom(Aiddef(VarKey id, v)) let val_of_constant c = val_of_idkey (ConstKey c) let val_of_constant_def n c v = let res = Obj.new_block accu_tag 2 in Obj.set_field res 0 (Obj.repr (mkAccuCond n)); Obj.set_field res 1 (Obj.repr (Aiddef(ConstKey c, v))); val_of_obj res let mkrel_vstack k arity = let max = k + arity - 1 in Array.init arity (fun i -> val_of_rel (max - i)) (*************************************************) (** Operations pour la manipulation des donnees **) (*************************************************) (* Functions over products *) let dom : vprod -> values = fun p -> val_of_obj (Obj.field (Obj.repr p) 0) let codom : vprod -> vfun = fun p -> (Obj.obj (Obj.field (Obj.repr p) 1)) (* Functions over vfun *) external closure_arity : vfun -> int = "coq_closure_arity" let body_of_vfun k vf = let vargs = mkrel_vstack k 1 in apply_vstack (Obj.magic vf) vargs let decompose_vfun2 k vf1 vf2 = let arity = min (closure_arity vf1) (closure_arity vf2) in assert (0 < arity && arity < Sys.max_array_length); let vargs = mkrel_vstack k arity in let v1 = apply_vstack (Obj.magic vf1) vargs in let v2 = apply_vstack (Obj.magic vf2) vargs in arity, v1, v2 (* Functions over fixpoint *) let first o = (offset_closure o (offset o)) let last o = (Obj.field o (Obj.size o - 1)) let current_fix vf = - (offset (Obj.repr vf) / 2) let unsafe_fb_code fb i = tcode_of_obj (Obj.field (Obj.repr fb) (2 * i)) let unsafe_rec_arg fb i = int_tcode (unsafe_fb_code fb i) 1 let rec_args vf = let fb = first (Obj.repr vf) in let size = Obj.size (last fb) in Array.init size (unsafe_rec_arg fb) exception FALSE let check_fix f1 f2 = let i1, i2 = current_fix f1, current_fix f2 in (* Verification du point de depart *) if i1 = i2 then let fb1,fb2 = first (Obj.repr f1), first (Obj.repr f2) in let n = Obj.size (last fb1) in (* Verification du nombre de definition *) if n = Obj.size (last fb2) then (* Verification des arguments recursifs *) try for i = 0 to n - 1 do if unsafe_rec_arg fb1 i <> unsafe_rec_arg fb2 i then raise FALSE done; true with FALSE -> false else false else false (* Functions over vfix *) external atom_rel : unit -> atom array = "get_coq_atom_tbl" external realloc_atom_rel : int -> unit = "realloc_coq_atom_tbl" let relaccu_tbl = let atom_rel = atom_rel() in let len = Array.length atom_rel in for i = 0 to len - 1 do atom_rel.(i) <- Aid (RelKey i) done; ref (Array.init len mkAccuCode) let relaccu_code i = let len = Array.length !relaccu_tbl in if i < len then !relaccu_tbl.(i) else begin realloc_atom_rel i; let atom_rel = atom_rel () in let nl = Array.length atom_rel in for j = len to nl - 1 do atom_rel.(j) <- Aid(RelKey j) done; relaccu_tbl := Array.init nl (fun j -> if j < len then !relaccu_tbl.(j) else mkAccuCode j); !relaccu_tbl.(i) end let reduce_fix k vf = let fb = first (Obj.repr vf) in (* calcul des types *) let fc_typ = ((Obj.obj (last fb)) : tcode array) in let ndef = Array.length fc_typ in let et = offset_closure fb (2*(ndef - 1)) in let ftyp = Array.map (fun c -> interprete c crasy_val (Obj.magic et) 0) fc_typ in (* Construction de l' environnement des corps des points fixes *) let e = Obj.dup fb in for i = 0 to ndef - 1 do Obj.set_field e (2 * i) (Obj.repr (relaccu_code (k + i))) done; let fix_body i = let jump_grabrec c = offset_tcode c 2 in let c = jump_grabrec (unsafe_fb_code fb i) in let res = Obj.new_block Obj.closure_tag 2 in Obj.set_field res 0 (Obj.repr c); Obj.set_field res 1 (offset_closure e (2*i)); ((Obj.obj res) : vfun) in (Array.init ndef fix_body, ftyp) (* Functions over vcofix *) let get_fcofix vcf i = match whd_val (Obj.obj (Obj.field (Obj.repr vcf) (i+1))) with | Vcofix(vcfi, _, _) -> vcfi | _ -> assert false let current_cofix vcf = let ndef = Obj.size (last (Obj.repr vcf)) in let rec find_cofix pos = if pos < ndef then if get_fcofix vcf pos == vcf then pos else find_cofix (pos+1) else raise Not_found in try find_cofix 0 with _ -> assert false let check_cofix vcf1 vcf2 = (current_cofix vcf1 = current_cofix vcf2) && (Obj.size (last (Obj.repr vcf1)) = Obj.size (last (Obj.repr vcf2))) let reduce_cofix k vcf = let fc_typ = ((Obj.obj (last (Obj.repr vcf))) : tcode array) in let ndef = Array.length fc_typ in let ftyp = Array.map (fun c -> interprete c crasy_val (Obj.magic vcf) 0) fc_typ in (* Construction de l'environnement des corps des cofix *) let e = Obj.dup (Obj.repr vcf) in for i = 0 to ndef - 1 do Obj.set_field e (i+1) (Obj.repr (val_of_rel (k+i))) done; let cofix_body i = let vcfi = get_fcofix vcf i in let c = Obj.field (Obj.repr vcfi) 0 in Obj.set_field e 0 c; let atom = Obj.new_block cofix_tag 1 in let self = Obj.new_block accu_tag 2 in Obj.set_field self 0 (Obj.repr accumulate); Obj.set_field self 1 (Obj.repr atom); apply_vstack (Obj.obj e) [|Obj.obj self|] in (Array.init ndef cofix_body, ftyp) (* Functions over vblock *) let btag : vblock -> int = fun b -> Obj.tag (Obj.repr b) let bsize : vblock -> int = fun b -> Obj.size (Obj.repr b) let bfield b i = if 0 <= i && i < (bsize b) then val_of_obj (Obj.field (Obj.repr b) i) else raise (Invalid_argument "Vm.bfield") (* Functions over vswitch *) let check_switch sw1 sw2 = sw1.sw_annot.rtbl = sw2.sw_annot.rtbl let case_info sw = sw.sw_annot.ci let type_of_switch sw = push_vstack sw.sw_stk; interprete sw.sw_type_code crasy_val sw.sw_env 0 let branch_arg k (tag,arity) = if arity = 0 then ((Obj.magic tag):values) else let b = Obj.new_block tag arity in for i = 0 to arity - 1 do Obj.set_field b i (Obj.repr (val_of_rel (k+i))) done; val_of_obj b let apply_switch sw arg = let tc = sw.sw_annot.tailcall in if tc then (push_ra stop;push_vstack sw.sw_stk) else (push_vstack sw.sw_stk; push_ra (popstop_code (Array.length sw.sw_stk))); interprete sw.sw_code arg sw.sw_env 0 let branch_of_switch k sw = let eval_branch (_,arity as ta) = let arg = branch_arg k ta in let v = apply_switch sw arg in (arity, v) in Array.map eval_branch sw.sw_annot.rtbl (* Evaluation *) let is_accu v = let o = Obj.repr v in Obj.is_block o && Obj.tag o = accu_tag && fun_code v == accumulate && Obj.tag (Obj.field o 1) < cofix_tag let rec whd_stack v stk = match stk with | [] -> whd_val v | Zapp args :: stkt -> whd_stack (apply_arguments v args) stkt | Zfix (f,args) :: stkt -> let o = Obj.repr v in if Obj.is_block o && Obj.tag o = accu_tag then whd_accu (Obj.repr v) stk else let v', stkt = match stkt with | Zapp args' :: stkt -> push_ra stop; push_arguments args'; push_val v; push_arguments args; let v' = interprete (fun_code f) (Obj.magic f) (Obj.magic f) (nargs args+ nargs args') in v', stkt | _ -> push_ra stop; push_val v; push_arguments args; let v' = interprete (fun_code f) (Obj.magic f) (Obj.magic f) (nargs args) in v', stkt in whd_stack v' stkt | Zswitch sw :: stkt -> let o = Obj.repr v in if Obj.is_block o && Obj.tag o = accu_tag then if Obj.tag (Obj.field o 1) < cofix_tag then whd_accu (Obj.repr v) stk else let to_up = match whd_accu (Obj.repr v) [] with | Vcofix (_, to_up, _) -> to_up | _ -> assert false in whd_stack (apply_switch sw to_up) stkt else whd_stack (apply_switch sw v) stkt let rec force_whd v stk = match whd_stack v stk with | Vatom_stk(Aiddef(_,v),stk) -> force_whd v stk | res -> res