(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* if m>n then raise LocalOccur | _ -> Constr.iter_with_binders succ closed_rec n c in try closed_rec n c; true with LocalOccur -> false (* [closed0 M] is true iff [M] is a (deBruijn) closed term *) let closed0 c = closedn 0 c (* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *) let noccurn n term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel m -> if Int.equal m n then raise LocalOccur | _ -> Constr.iter_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M for n <= p < n+m *) let noccur_between n m term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel p -> if n<=p && p Constr.iter_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* Checking function for terms containing existential variables. The function [noccur_with_meta] considers the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let isMeta c = match Constr.kind c with | Constr.Meta _ -> true | _ -> false let noccur_with_meta n m term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel p -> if n<=p && p (match Constr.kind f with | Constr.Cast (c,_,_) when isMeta c -> () | Constr.Meta _ -> () | _ -> Constr.iter_with_binders succ occur_rec n c) | Constr.Evar (_, _) -> () | _ -> Constr.iter_with_binders succ occur_rec n c in try (occur_rec n term; true) with LocalOccur -> false (*********************) (* Lifting *) (*********************) (* The generic lifting function *) let rec exliftn el c = match Constr.kind c with | Constr.Rel i -> Constr.mkRel(reloc_rel i el) | _ -> Constr.map_with_binders el_lift exliftn el c (* Lifting the binding depth across k bindings *) let liftn n k c = match el_liftn (pred k) (el_shft n el_id) with | ELID -> c | el -> exliftn el c let lift n = liftn n 1 (*********************) (* Substituting *) (*********************) (* (subst1 M c) substitutes M for Rel(1) in c we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel M1,...,Mn for respectively Rel(1),...,Rel(n) in c *) (* 1st : general case *) type info = Closed | Open | Unknown type 'a substituend = { mutable sinfo: info; sit: 'a } let lift_substituend depth s = match s.sinfo with | Closed -> s.sit | Open -> lift depth s.sit | Unknown -> let sit = s.sit in if closed0 sit then let () = s.sinfo <- Closed in sit else let () = s.sinfo <- Open in lift depth sit let make_substituend c = { sinfo=Unknown; sit=c } let substn_many lamv n c = let lv = Array.length lamv in if Int.equal lv 0 then c else let rec substrec depth c = match Constr.kind c with | Constr.Rel k -> if k<=depth then c else if k-depth <= lv then lift_substituend depth (Array.unsafe_get lamv (k-depth-1)) else Constr.mkRel (k-lv) | _ -> Constr.map_with_binders succ substrec depth c in substrec n c (* let substkey = Profile.declare_profile "substn_many";; let substn_many lamv n c = Profile.profile3 substkey substn_many lamv n c;; *) let make_subst = function | [] -> [||] | hd :: tl -> let len = List.length tl in let subst = Array.make (1 + len) (make_substituend hd) in let s = ref tl in for i = 1 to len do match !s with | [] -> assert false | x :: tl -> Array.unsafe_set subst i (make_substituend x); s := tl done; subst let substnl laml n c = substn_many (make_subst laml) n c let substl laml c = substn_many (make_subst laml) 0 c let subst1 lam c = substn_many [|make_substituend lam|] 0 c let substnl_decl laml k r = map_rel_declaration (fun c -> substnl laml k c) r let substl_decl laml r = map_rel_declaration (fun c -> substnl laml 0 c) r let subst1_decl lam r = map_rel_declaration (fun c -> subst1 lam c) r let substnl_named_decl laml k d = map_named_declaration (fun c -> substnl laml k c) d let substl_named_decl laml d = map_named_declaration (fun c -> substnl laml 0 c) d let subst1_named_decl lam d = map_named_declaration (fun c -> subst1 lam c) d (* (thin_val sigma) removes identity substitutions from sigma *) let rec thin_val = function | [] -> [] | (id, c) :: tl -> match Constr.kind c with | Constr.Var v -> if Id.equal id v then thin_val tl else (id, make_substituend c) :: (thin_val tl) | _ -> (id, make_substituend c) :: (thin_val tl) let rec find_var id = function | [] -> raise Not_found | (idc, c) :: subst -> if Id.equal id idc then c else find_var id subst (* (replace_vars sigma M) applies substitution sigma to term M *) let replace_vars var_alist x = let var_alist = thin_val var_alist in match var_alist with | [] -> x | _ -> let rec substrec n c = match Constr.kind c with | Constr.Var x -> (try lift_substituend n (find_var x var_alist) with Not_found -> c) | _ -> Constr.map_with_binders succ substrec n c in substrec 0 x (* let repvarkey = Profile.declare_profile "replace_vars";; let replace_vars vl c = Profile.profile2 repvarkey replace_vars vl c ;; *) (* (subst_var str t) substitute (VAR str) by (Rel 1) in t *) let subst_var str t = replace_vars [(str, Constr.mkRel 1)] t (* (subst_vars [id1;...;idn] t) substitute (VAR idj) by (Rel j) in t *) let substn_vars p vars c = let _,subst = List.fold_left (fun (n,l) var -> ((n+1),(var,Constr.mkRel n)::l)) (p,[]) vars in replace_vars (List.rev subst) c let subst_vars subst c = substn_vars 1 subst c (** Universe substitutions *) open Constr let subst_univs_fn_puniverses fn = let f = Univ.Instance.subst_fn fn in fun ((c, u) as x) -> let u' = f u in if u' == u then x else (c, u') let subst_univs_fn_constr f c = let changed = ref false in let fu = Univ.subst_univs_universe f in let fi = Univ.Instance.subst_fn (Univ.level_subst_of f) in let rec aux t = match kind t with | Sort (Sorts.Type u) -> let u' = fu u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | Const (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> let u' = fi u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstructU (c, u')) | _ -> map aux t in let c' = aux c in if !changed then c' else c let subst_univs_constr subst c = if Univ.is_empty_subst subst then c else let f = Univ.make_subst subst in subst_univs_fn_constr f c let subst_univs_constr = if Flags.profile then let subst_univs_constr_key = Profile.declare_profile "subst_univs_constr" in Profile.profile2 subst_univs_constr_key subst_univs_constr else subst_univs_constr let subst_univs_level_constr subst c = if Univ.is_empty_level_subst subst then c else let f = Univ.Instance.subst_fn (Univ.subst_univs_level_level subst) in let changed = ref false in let rec aux t = match kind t with | Const (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstructU (c, u')) | Sort (Sorts.Type u) -> let u' = Univ.subst_univs_level_universe subst u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | _ -> Constr.map aux t in let c' = aux c in if !changed then c' else c let subst_univs_level_context s = map_rel_context (subst_univs_level_constr s) let subst_instance_constr subst c = if Univ.Instance.is_empty subst then c else let f u = Univ.subst_instance_instance subst u in let changed = ref false in let rec aux t = match kind t with | Const (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstructU (c, u')) | Sort (Sorts.Type u) -> let u' = Univ.subst_instance_universe subst u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | _ -> Constr.map aux t in let c' = aux c in if !changed then c' else c (* let substkey = Profile.declare_profile "subst_instance_constr";; *) (* let subst_instance_constr inst c = Profile.profile2 substkey subst_instance_constr inst c;; *) let subst_instance_context s ctx = if Univ.Instance.is_empty s then ctx else map_rel_context (fun x -> subst_instance_constr s x) ctx type id_key = constant tableKey let eq_id_key x y = Names.eq_table_key Constant.equal x y