(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* bool (** Is the universe set or prop? *) val is_prop : t -> bool val is_set : t -> bool (** Is it specifically Prop or Set *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function *) val hash : t -> int val make : Names.DirPath.t -> int -> t (** Create a new universe level from a unique identifier and an associated module path. *) val pr : t -> Pp.t (** Pretty-printing *) val to_string : t -> string (** Debug printing *) val var : int -> t val var_index : t -> int option val name : t -> (Names.DirPath.t * int) option end type universe_level = Level.t [@@ocaml.deprecated "Use Level.t"] (** Sets of universe levels *) module LSet : sig include CSig.SetS with type elt = Level.t val pr : (Level.t -> Pp.t) -> t -> Pp.t (** Pretty-printing *) end type universe_set = LSet.t [@@ocaml.deprecated "Use LSet.t"] module Universe : sig type t (** Type of universes. A universe is defined as a set of level expressions. A level expression is built from levels and successors of level expressions, i.e.: le ::= l + n, n \in N. A universe is said atomic if it consists of a single level expression with no increment, and algebraic otherwise (think the least upper bound of a set of level expressions). *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function on formal universes *) val hash : t -> int (** Hash function *) val make : Level.t -> t (** Create a universe representing the given level. *) val pr : t -> Pp.t (** Pretty-printing *) val pr_with : (Level.t -> Pp.t) -> t -> Pp.t val is_level : t -> bool (** Test if the universe is a level or an algebraic universe. *) val is_levels : t -> bool (** Test if the universe is a lub of levels or contains +n's. *) val level : t -> Level.t option (** Try to get a level out of a universe, returns [None] if it is an algebraic universe. *) val levels : t -> LSet.t (** Get the levels inside the universe, forgetting about increments *) val super : t -> t (** The universe strictly above *) val sup : t -> t -> t (** The l.u.b. of 2 universes *) val type0m : t (** image of Prop in the universes hierarchy *) val type0 : t (** image of Set in the universes hierarchy *) val type1 : t (** the universe of the type of Prop/Set *) val exists : (Level.t * int -> bool) -> t -> bool val for_all : (Level.t * int -> bool) -> t -> bool val map : (Level.t * int -> 'a) -> t -> 'a list end type universe = Universe.t [@@ocaml.deprecated "Use Universe.t"] (** Alias name. *) val pr_uni : Universe.t -> Pp.t (** The universes hierarchy: Type 0- = Prop <= Type 0 = Set <= Type 1 <= ... Typing of universes: Type 0-, Type 0 : Type 1; Type i : Type (i+1) if i>0 *) val type0m_univ : Universe.t val type0_univ : Universe.t val type1_univ : Universe.t val is_type0_univ : Universe.t -> bool val is_type0m_univ : Universe.t -> bool val is_univ_variable : Universe.t -> bool val is_small_univ : Universe.t -> bool val sup : Universe.t -> Universe.t -> Universe.t val super : Universe.t -> Universe.t val universe_level : Universe.t -> Level.t option (** [univ_level_mem l u] Is l is mentionned in u ? *) val univ_level_mem : Level.t -> Universe.t -> bool (** [univ_level_rem u v min] removes [u] from [v], resulting in [min] if [v] was exactly [u]. *) val univ_level_rem : Level.t -> Universe.t -> Universe.t -> Universe.t (** {6 Constraints. } *) type constraint_type = Lt | Le | Eq type univ_constraint = Level.t * constraint_type * Level.t module Constraint : sig include Set.S with type elt = univ_constraint end type constraints = Constraint.t [@@ocaml.deprecated "Use Constraint.t"] val empty_constraint : Constraint.t val union_constraint : Constraint.t -> Constraint.t -> Constraint.t val eq_constraint : Constraint.t -> Constraint.t -> bool (** A value with universe Constraint.t. *) type 'a constrained = 'a * Constraint.t (** Constrained *) val constraints_of : 'a constrained -> Constraint.t (** Enforcing Constraint.t. *) type 'a constraint_function = 'a -> 'a -> Constraint.t -> Constraint.t val enforce_eq : Universe.t constraint_function val enforce_leq : Universe.t constraint_function val enforce_eq_level : Level.t constraint_function val enforce_leq_level : Level.t constraint_function (** Type explanation is used to decorate error messages to provide useful explanation why a given constraint is rejected. It is composed of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means .. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol denoted by ri, currently only < and <=). The lowest end of the chain is supposed known (see UniverseInconsistency exn). The upper end may differ from the second univ of UniverseInconsistency because all universes in the path are canonical. Note that each step does not necessarily correspond to an actual constraint, but reflect how the system stores the graph and may result from combination of several Constraint.t... *) type explanation = (constraint_type * Universe.t) list type univ_inconsistency = constraint_type * Universe.t * Universe.t * explanation Lazy.t option exception UniverseInconsistency of univ_inconsistency (** {6 Support for universe polymorphism } *) (** Polymorphic maps from universe levels to 'a *) module LMap : sig include CMap.ExtS with type key = Level.t and module Set := LSet val union : 'a t -> 'a t -> 'a t (** [union x y] favors the bindings in the first map. *) val diff : 'a t -> 'a t -> 'a t (** [diff x y] removes bindings from x that appear in y (whatever the value). *) val subst_union : 'a option t -> 'a option t -> 'a option t (** [subst_union x y] favors the bindings of the first map that are [Some], otherwise takes y's bindings. *) val pr : ('a -> Pp.t) -> 'a t -> Pp.t (** Pretty-printing *) end type 'a universe_map = 'a LMap.t (** {6 Substitution} *) type universe_subst_fn = Level.t -> Universe.t type universe_level_subst_fn = Level.t -> Level.t (** A full substitution, might involve algebraic universes *) type universe_subst = Universe.t universe_map type universe_level_subst = Level.t universe_map module Variance : sig (** A universe position in the instance given to a cumulative inductive can be the following. Note there is no Contravariant case because [forall x : A, B <= forall x : A', B'] requires [A = A'] as opposed to [A' <= A]. *) type t = Irrelevant | Covariant | Invariant (** [check_subtype x y] holds if variance [y] is also an instance of [x] *) val check_subtype : t -> t -> bool val sup : t -> t -> t val pr : t -> Pp.t end (** {6 Universe instances} *) module Instance : sig type t (** A universe instance represents a vector of argument universes to a polymorphic definition (constant, inductive or constructor). *) val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t (** To concatenate two instances, used for discharge *) val equal : t -> t -> bool (** Equality *) val length : t -> int (** Instance length *) val hcons : t -> t (** Hash-consing. *) val hash : t -> int (** Hash value *) val share : t -> t * int (** Simultaneous hash-consing and hash-value computation *) val subst_fn : universe_level_subst_fn -> t -> t (** Substitution by a level-to-level function. *) val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t (** Pretty-printing, no comments *) val levels : t -> LSet.t (** The set of levels in the instance *) end type universe_instance = Instance.t [@@ocaml.deprecated "Use Instance.t"] val enforce_eq_instances : Instance.t constraint_function val enforce_eq_variance_instances : Variance.t array -> Instance.t constraint_function val enforce_leq_variance_instances : Variance.t array -> Instance.t constraint_function type 'a puniverses = 'a * Instance.t val out_punivs : 'a puniverses -> 'a val in_punivs : 'a -> 'a puniverses val eq_puniverses : ('a -> 'a -> bool) -> 'a puniverses -> 'a puniverses -> bool (** A vector of universe levels with universe Constraint.t, representiong local universe variables and associated Constraint.t *) module UContext : sig type t val make : Instance.t constrained -> t val empty : t val is_empty : t -> bool val instance : t -> Instance.t val constraints : t -> Constraint.t val dest : t -> Instance.t * Constraint.t (** Keeps the order of the instances *) val union : t -> t -> t (** the number of universes in the context *) val size : t -> int end type universe_context = UContext.t [@@ocaml.deprecated "Use UContext.t"] module AUContext : sig type t val repr : t -> UContext.t (** [repr ctx] is [(Var(0), ... Var(n-1) |= cstr] where [n] is the length of the context and [cstr] the abstracted Constraint.t. *) val empty : t val is_empty : t -> bool (** Don't use. *) val instance : t -> Instance.t val size : t -> int (** Keeps the order of the instances *) val union : t -> t -> t val instantiate : Instance.t -> t -> Constraint.t (** Generate the set of instantiated Constraint.t **) end type abstract_universe_context = AUContext.t [@@ocaml.deprecated "Use AUContext.t"] (** Universe info for cumulative inductive types: A context of universe levels with universe constraints, representing local universe variables and constraints, together with an array of Variance.t. This data structure maintains the invariant that the variance array has the same length as the universe instance. *) module CumulativityInfo : sig type t val make : UContext.t * Variance.t array -> t val empty : t val is_empty : t -> bool val univ_context : t -> UContext.t val variance : t -> Variance.t array (** This function takes a universe context representing constraints of an inductive and produces a CumulativityInfo.t with the trivial subtyping relation. *) val from_universe_context : UContext.t -> t val leq_constraints : t -> Instance.t constraint_function val eq_constraints : t -> Instance.t constraint_function end type cumulativity_info = CumulativityInfo.t [@@ocaml.deprecated "Use CumulativityInfo.t"] module ACumulativityInfo : sig type t val univ_context : t -> AUContext.t val variance : t -> Variance.t array val leq_constraints : t -> Instance.t constraint_function val eq_constraints : t -> Instance.t constraint_function end type abstract_cumulativity_info = ACumulativityInfo.t [@@ocaml.deprecated "Use ACumulativityInfo.t"] (** Universe contexts (as sets) *) module ContextSet : sig type t = LSet.t constrained val empty : t val is_empty : t -> bool val singleton : Level.t -> t val of_instance : Instance.t -> t val of_set : LSet.t -> t val equal : t -> t -> bool val union : t -> t -> t val append : t -> t -> t (** Variant of {!union} which is more efficient when the left argument is much smaller than the right one. *) val diff : t -> t -> t val add_universe : Level.t -> t -> t val add_constraints : Constraint.t -> t -> t val add_instance : Instance.t -> t -> t (** Arbitrary choice of linear order of the variables *) val sort_levels : Level.t array -> Level.t array val to_context : t -> UContext.t val of_context : UContext.t -> t val constraints : t -> Constraint.t val levels : t -> LSet.t (** the number of universes in the context *) val size : t -> int end (** A set of universes with universe Constraint.t. We linearize the set to a list after typechecking. Beware, representation could change. *) type universe_context_set = ContextSet.t [@@ocaml.deprecated "Use ContextSet.t"] (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * UContext.t type 'a in_universe_context_set = 'a * ContextSet.t val empty_level_subst : universe_level_subst val is_empty_level_subst : universe_level_subst -> bool (** Substitution of universes. *) val subst_univs_level_level : universe_level_subst -> Level.t -> Level.t val subst_univs_level_universe : universe_level_subst -> Universe.t -> Universe.t val subst_univs_level_constraints : universe_level_subst -> Constraint.t -> Constraint.t val subst_univs_level_abstract_universe_context : universe_level_subst -> AUContext.t -> AUContext.t val subst_univs_level_instance : universe_level_subst -> Instance.t -> Instance.t (** Level to universe substitutions. *) val empty_subst : universe_subst val is_empty_subst : universe_subst -> bool val make_subst : universe_subst -> universe_subst_fn val subst_univs_universe : universe_subst_fn -> Universe.t -> Universe.t (** Only user in the kernel is template polymorphism. Ideally we get rid of this code if it goes away. *) (** Substitution of instances *) val subst_instance_instance : Instance.t -> Instance.t -> Instance.t val subst_instance_universe : Instance.t -> Universe.t -> Universe.t val make_instance_subst : Instance.t -> universe_level_subst (** Creates [u(0) ↦ 0; ...; u(n-1) ↦ n - 1] out of [u(0); ...; u(n - 1)] *) val make_inverse_instance_subst : Instance.t -> universe_level_subst val abstract_universes : UContext.t -> Instance.t * AUContext.t val abstract_cumulativity_info : CumulativityInfo.t -> Instance.t * ACumulativityInfo.t (** TODO: move universe abstraction out of the kernel *) val make_abstract_instance : AUContext.t -> Instance.t (** [compact_univ u] remaps local variables in [u] such that their indices become consecutive. It returns the new universe and the mapping. Example: compact_univ [(Var 0, i); (Prop, 0); (Var 2; j))] = [(Var 0,i); (Prop, 0); (Var 1; j)], [0; 2] *) val compact_univ : Universe.t -> Universe.t * int list (** {6 Pretty-printing of universes. } *) val pr_constraint_type : constraint_type -> Pp.t val pr_constraints : (Level.t -> Pp.t) -> Constraint.t -> Pp.t val pr_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array -> UContext.t -> Pp.t val pr_cumulativity_info : (Level.t -> Pp.t) -> CumulativityInfo.t -> Pp.t val pr_abstract_universe_context : (Level.t -> Pp.t) -> ?variance:Variance.t array -> AUContext.t -> Pp.t val pr_abstract_cumulativity_info : (Level.t -> Pp.t) -> ACumulativityInfo.t -> Pp.t val pr_universe_context_set : (Level.t -> Pp.t) -> ContextSet.t -> Pp.t val explain_universe_inconsistency : (Level.t -> Pp.t) -> univ_inconsistency -> Pp.t val pr_universe_level_subst : universe_level_subst -> Pp.t val pr_universe_subst : universe_subst -> Pp.t (** {6 Hash-consing } *) val hcons_univ : Universe.t -> Universe.t val hcons_constraints : Constraint.t -> Constraint.t val hcons_universe_set : LSet.t -> LSet.t val hcons_universe_context : UContext.t -> UContext.t val hcons_abstract_universe_context : AUContext.t -> AUContext.t val hcons_universe_context_set : ContextSet.t -> ContextSet.t val hcons_cumulativity_info : CumulativityInfo.t -> CumulativityInfo.t val hcons_abstract_cumulativity_info : ACumulativityInfo.t -> ACumulativityInfo.t (******) (* deprecated: use qualified names instead *) val compare_levels : Level.t -> Level.t -> int [@@ocaml.deprecated "Use Level.compare"] val eq_levels : Level.t -> Level.t -> bool [@@ocaml.deprecated "Use Level.equal"] (** deprecated: Equality of formal universe expressions. *) val equal_universes : Universe.t -> Universe.t -> bool [@@ocaml.deprecated "Use Universe.equal"] (** Universes of Constraint.t *) val universes_of_constraints : Constraint.t -> LSet.t [@@ocaml.deprecated "Use Constraint.universes_of"]