(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* try conv_leq false env t1 t2 with NotConvertible -> raise (NotConvertibleVect i)) () v1 v2 let check_constraints cst env = if Environ.check_constraints cst env then () else error_unsatisfied_constraints env cst (* This should be a type (a priori without intention to be an assumption) *) let check_type env c t = match kind(whd_all env t) with | Sort s -> s | _ -> error_not_type env (make_judge c t) (* This should be a type intended to be assumed. The error message is not as useful as for [type_judgment]. *) let check_assumption env t ty = try let _ = check_type env t ty in t with TypeError _ -> error_assumption env (make_judge t ty) (************************************************) (* Incremental typing rules: builds a typing judgment given the *) (* judgments for the subterms. *) (*s Type of sorts *) (* Prop and Set *) let type1 = mkSort Sorts.type1 (* Type of Type(i). *) let type_of_type u = let uu = Universe.super u in mkType uu let type_of_sort = function | Prop | Set -> type1 | Type u -> type_of_type u (*s Type of a de Bruijn index. *) let type_of_relative env n = try env |> lookup_rel n |> RelDecl.get_type |> lift n with Not_found -> error_unbound_rel env n (* Type of variables *) let type_of_variable env id = try named_type id env with Not_found -> error_unbound_var env id (* Management of context of variables. *) (* Checks if a context of variables can be instantiated by the variables of the current env. Order does not have to be checked assuming that all names are distinct *) let check_hyps_inclusion env f c sign = Context.Named.fold_outside (fun d1 () -> let open Context.Named.Declaration in let id = NamedDecl.get_id d1 in try let d2 = lookup_named id env in conv env (get_type d2) (get_type d1); (match d2,d1 with | LocalAssum _, LocalAssum _ -> () | LocalAssum _, LocalDef _ -> (* This is wrong, because we don't know if the body is needed or not for typechecking: *) () | LocalDef _, LocalAssum _ -> raise NotConvertible | LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1); with Not_found | NotConvertible | Option.Heterogeneous -> error_reference_variables env id (f c)) sign ~init:() (* Instantiation of terms on real arguments. *) (* Make a type polymorphic if an arity *) (* Type of constants *) let type_of_constant env (kn,u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in let ty, cu = constant_type env cst in let () = check_constraints cu env in ty let type_of_constant_in env (kn,u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in constant_type_in env cst (* Type of a lambda-abstraction. *) (* [judge_of_abstraction env name var j] implements the rule env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s ----------------------------------------------------------------------- env |- [name:typ]j.uj_val : (name:typ)j.uj_type Since all products are defined in the Calculus of Inductive Constructions and no upper constraint exists on the sort $s$, we don't need to compute $s$ *) let type_of_abstraction env name var ty = mkProd (name, var, ty) (* Type of an application. *) let make_judgev c t = Array.map2 make_judge c t let type_of_apply env func funt argsv argstv = let len = Array.length argsv in let rec apply_rec i typ = if Int.equal i len then typ else (match kind (whd_all env typ) with | Prod (_,c1,c2) -> let arg = argsv.(i) and argt = argstv.(i) in (try let () = conv_leq false env argt c1 in apply_rec (i+1) (subst1 arg c2) with NotConvertible -> error_cant_apply_bad_type env (i+1,c1,argt) (make_judge func funt) (make_judgev argsv argstv)) | _ -> error_cant_apply_not_functional env (make_judge func funt) (make_judgev argsv argstv)) in apply_rec 0 funt (* Type of product *) let sort_of_product env domsort rangsort = match (domsort, rangsort) with (* Product rule (s,Prop,Prop) *) | (_, Prop) -> rangsort (* Product rule (Prop/Set,Set,Set) *) | ((Prop | Set), Set) -> rangsort (* Product rule (Type,Set,?) *) | (Type u1, Set) -> if is_impredicative_set env then (* Rule is (Type,Set,Set) in the Set-impredicative calculus *) rangsort else (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *) Type (Universe.sup Universe.type0 u1) (* Product rule (Prop,Type_i,Type_i) *) | (Set, Type u2) -> Type (Universe.sup Universe.type0 u2) (* Product rule (Prop,Type_i,Type_i) *) | (Prop, Type _) -> rangsort (* Product rule (Type_i,Type_i,Type_i) *) | (Type u1, Type u2) -> Type (Universe.sup u1 u2) (* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule env |- typ1:s1 env, name:typ1 |- typ2 : s2 ------------------------------------------------------------------------- s' >= (s1,s2), env |- (name:typ)j.uj_val : s' where j.uj_type is convertible to a sort s2 *) let type_of_product env name s1 s2 = let s = sort_of_product env s1 s2 in mkSort s (* Type of a type cast *) (* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule env |- c:typ1 env |- typ2:s env |- typ1 <= typ2 --------------------------------------------------------------------- env |- c:typ2 *) let check_cast env c ct k expected_type = try match k with | VMcast -> Vconv.vm_conv CUMUL env ct expected_type | DEFAULTcast -> default_conv ~l2r:false CUMUL env ct expected_type | REVERTcast -> default_conv ~l2r:true CUMUL env ct expected_type | NATIVEcast -> let sigma = Nativelambda.empty_evars in Nativeconv.native_conv CUMUL sigma env ct expected_type with NotConvertible -> error_actual_type env (make_judge c ct) expected_type (* Inductive types. *) (* The type is parametric over the uniform parameters whose conclusion is in Type; to enforce the internal constraints between the parameters and the instances of Type occurring in the type of the constructors, we use the level variables _statically_ assigned to the conclusions of the parameters as mediators: e.g. if a parameter has conclusion Type(alpha), static constraints of the form alpha<=v exist between alpha and the Type's occurring in the constructor types; when the parameters is finally instantiated by a term of conclusion Type(u), then the constraints u<=alpha is computed in the App case of execute; from this constraints, the expected dynamic constraints of the form u<=v are enforced *) let type_of_inductive_knowing_parameters env (ind,u as indu) args = let (mib,mip) as spec = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters env (spec,u) args in check_constraints cst env; t let type_of_inductive env (ind,u as indu) = let (mib,mip) = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive env ((mib,mip),u) in check_constraints cst env; t (* Constructors. *) let type_of_constructor env (c,u as cu) = let () = let ((kn,_),_) = c in let mib = lookup_mind kn env in check_hyps_inclusion env mkConstructU cu mib.mind_hyps in let specif = lookup_mind_specif env (inductive_of_constructor c) in let t,cst = constrained_type_of_constructor cu specif in let () = check_constraints cst env in t (* Case. *) let check_branch_types env (ind,u) c ct lft explft = try conv_leq_vecti env lft explft with NotConvertibleVect i -> error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i) | Invalid_argument _ -> error_number_branches env (make_judge c ct) (Array.length explft) let type_of_case env ci p pt c ct lf lft = let (pind, _ as indspec) = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in let () = check_case_info env pind ci in let (bty,rslty) = type_case_branches env indspec (make_judge p pt) c in let () = check_branch_types env pind c ct lft bty in rslty let type_of_projection env p c ct = let pty = lookup_projection p env in let (ind,u), args = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in assert(eq_ind (Projection.inductive p) ind); let ty = Vars.subst_instance_constr u pty in substl (c :: CList.rev args) ty (* Fixpoints. *) (* Checks the type of a general (co)fixpoint, i.e. without checking *) (* the specific guard condition. *) let check_fixpoint env lna lar vdef vdeft = let lt = Array.length vdeft in assert (Int.equal (Array.length lar) lt); try conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar) with NotConvertibleVect i -> error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar (************************************************************************) (************************************************************************) (* The typing machine. *) (* ATTENTION : faudra faire le typage du contexte des Const, Ind et Constructsi un jour cela devient des constructions arbitraires et non plus des variables *) let rec execute env cstr = let open Context.Rel.Declaration in match kind cstr with (* Atomic terms *) | Sort s -> type_of_sort s | Rel n -> type_of_relative env n | Var id -> type_of_variable env id | Const c -> type_of_constant env c | Proj (p, c) -> let ct = execute env c in type_of_projection env p c ct (* Lambda calculus operators *) | App (f,args) -> let argst = execute_array env args in let ft = match kind f with | Ind ind when Environ.template_polymorphic_pind ind env -> let args = Array.map (fun t -> lazy t) argst in type_of_inductive_knowing_parameters env ind args | _ -> (* No template polymorphism *) execute env f in type_of_apply env f ft args argst | Lambda (name,c1,c2) -> let _ = execute_is_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let c2t = execute env1 c2 in type_of_abstraction env name c1 c2t | Prod (name,c1,c2) -> let vars = execute_is_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let vars' = execute_is_type env1 c2 in type_of_product env name vars vars' | LetIn (name,c1,c2,c3) -> let c1t = execute env c1 in let _c2s = execute_is_type env c2 in let () = check_cast env c1 c1t DEFAULTcast c2 in let env1 = push_rel (LocalDef (name,c1,c2)) env in let c3t = execute env1 c3 in subst1 c1 c3t | Cast (c,k,t) -> let ct = execute env c in let _ts = (check_type env t (execute env t)) in let () = check_cast env c ct k t in t (* Inductive types *) | Ind ind -> type_of_inductive env ind | Construct c -> type_of_constructor env c | Case (ci,p,c,lf) -> let ct = execute env c in let pt = execute env p in let lft = execute_array env lf in type_of_case env ci p pt c ct lf lft | Fix ((vn,i as vni),recdef) -> let (fix_ty,recdef') = execute_recdef env recdef i in let fix = (vni,recdef') in check_fix env fix; fix_ty | CoFix (i,recdef) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cofix = (i,recdef') in check_cofix env cofix; fix_ty (* Partial proofs: unsupported by the kernel *) | Meta _ -> anomaly (Pp.str "the kernel does not support metavariables.") | Evar _ -> anomaly (Pp.str "the kernel does not support existential variables.") and execute_is_type env constr = let t = execute env constr in check_type env constr t and execute_recdef env (names,lar,vdef) i = let lart = execute_array env lar in let lara = Array.map2 (check_assumption env) lar lart in let env1 = push_rec_types (names,lara,vdef) env in let vdeft = execute_array env1 vdef in let () = check_fixpoint env1 names lara vdef vdeft in (lara.(i),(names,lara,vdef)) and execute_array env = Array.map (execute env) (* Derived functions *) let universe_levels_of_constr env c = let rec aux s c = match kind c with | Const (c, u) -> LSet.fold LSet.add (Instance.levels u) s | Ind ((mind,_), u) | Construct (((mind,_),_), u) -> LSet.fold LSet.add (Instance.levels u) s | Sort u when not (Sorts.is_small u) -> let u = Sorts.univ_of_sort u in LSet.fold LSet.add (Universe.levels u) s | _ -> Constr.fold aux s c in aux LSet.empty c let check_wellformed_universes env c = let univs = universe_levels_of_constr env c in try UGraph.check_declared_universes (universes env) univs with UGraph.UndeclaredLevel u -> error_undeclared_universe env u let infer env constr = let () = check_wellformed_universes env constr in let t = execute env constr in make_judge constr t let infer = if Flags.profile then let infer_key = CProfile.declare_profile "Fast_infer" in CProfile.profile2 infer_key (fun b c -> infer b c) else (fun b c -> infer b c) let assumption_of_judgment env {uj_val=c; uj_type=t} = check_assumption env c t let type_judgment env {uj_val=c; uj_type=t} = let s = check_type env c t in {utj_val = c; utj_type = s } let infer_type env constr = let () = check_wellformed_universes env constr in let t = execute env constr in let s = check_type env constr t in {utj_val = constr; utj_type = s} let infer_v env cv = let () = Array.iter (check_wellformed_universes env) cv in let jv = execute_array env cv in make_judgev cv jv (* Typing of several terms. *) let infer_local_decl env id = function | Entries.LocalDefEntry c -> let () = check_wellformed_universes env c in let t = execute env c in RelDecl.LocalDef (Name id, c, t) | Entries.LocalAssumEntry c -> let () = check_wellformed_universes env c in let t = execute env c in RelDecl.LocalAssum (Name id, check_assumption env c t) let infer_local_decls env decls = let rec inferec env = function | (id, d) :: l -> let (env, l) = inferec env l in let d = infer_local_decl env id d in (push_rel d env, Context.Rel.add d l) | [] -> (env, Context.Rel.empty) in inferec env decls let judge_of_prop = make_judge mkProp type1 let judge_of_set = make_judge mkSet type1 let judge_of_type u = make_judge (mkType u) (type_of_type u) let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k) let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x) let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst) let judge_of_projection env p cj = make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type) let dest_judgev v = Array.map j_val v, Array.map j_type v let judge_of_apply env funj argjv = let args, argtys = dest_judgev argjv in make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys) let judge_of_abstraction env x varj bodyj = make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) (type_of_abstraction env x varj.utj_val bodyj.uj_type) let judge_of_product env x varj outj = make_judge (mkProd (x, varj.utj_val, outj.utj_val)) (mkSort (sort_of_product env varj.utj_type outj.utj_type)) let judge_of_letin env name defj typj j = make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) (subst1 defj.uj_val j.uj_type) let judge_of_cast env cj k tj = let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in make_judge c tj.utj_val let judge_of_inductive env indu = make_judge (mkIndU indu) (type_of_inductive env indu) let judge_of_constructor env cu = make_judge (mkConstructU cu) (type_of_constructor env cu) let judge_of_case env ci pj cj lfj = let lf, lft = dest_judgev lfj in make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val, lft)) (type_of_case env ci pj.uj_val pj.uj_type cj.uj_val cj.uj_type lf lft)