(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Labmap.add (label_of_id id) (IndConstr((ip,i+1), mib)) map) oib.mind_consnames map in Labmap.add (label_of_id oib.mind_typename) (IndType (ip, mib)) map in array_fold_right_i add_nameobjects_of_one mib.mind_packets map (* creates namedobject map for the whole signature *) let make_label_map mp list = let add_one (l,e) map = let add_map obj = Labmap.add l obj map in match e with | SFBconst cb -> add_map (Constant cb) | SFBmind mib -> add_nameobjects_of_mib (make_kn mp empty_dirpath l) mib map | SFBmodule mb -> add_map (Module mb) | SFBmodtype mtb -> add_map (Modtype mtb) | SFBalias (mp,cst) -> add_map (Alias mp) in List.fold_right add_one list Labmap.empty let check_conv_error error cst f env a1 a2 = try Constraint.union cst (f env a1 a2) with NotConvertible -> error () (* for now we do not allow reorderings *) let check_inductive cst env msid1 l info1 mib2 spec2 = let kn = make_kn (MPself msid1) empty_dirpath l in let error () = error_not_match l spec2 in let check_conv cst f = check_conv_error error cst f in let mib1 = match info1 with | IndType ((_,0), mib) -> mib | _ -> error () in let check_inductive_type cst env t1 t2 = (* Due to sort-polymorphism in inductive types, the conclusions of t1 and t2, if in Type, are generated as the least upper bounds of the types of the constructors. By monotonicity of the infered l.u.b. wrt subtyping (i.e. if X:U |- T(X):s and |- M:U' and U'<=U then infer_type(T(M))<=s), each universe in the conclusion of t1 has an bounding universe in the conclusion of t2, so that we don't need to check the subtyping of the conclusions of t1 and t2. Even if we'd like to recheck it, the inference of constraints is not designed to deal with algebraic constraints of the form max-univ(u1..un) <= max-univ(u'1..u'n), so that it is not easy to recheck it (in short, we would need the actual graph of constraints as input while type checking is currently designed to output a set of constraints instead) *) (* So we cheat and replace the subtyping problem on algebraic constraints of the form max-univ(u1..un) <= max-univ(u'1..u'n) (that we know are necessary true) by trivial constraints that the constraint generator knows how to deal with *) let (ctx1,s1) = dest_arity env t1 in let (ctx2,s2) = dest_arity env t2 in let s1,s2 = match s1, s2 with | Type _, Type _ -> (* shortcut here *) prop_sort, prop_sort | (Prop _, Type _) | (Type _,Prop _) -> error () | _ -> (s1, s2) in check_conv cst conv_leq env (Sign.mkArity (ctx1,s1)) (Sign.mkArity (ctx2,s2)) in let check_packet cst p1 p2 = let check f = if f p1 <> f p2 then error () in check (fun p -> p.mind_consnames); check (fun p -> p.mind_typename); (* nf_lc later *) (* nf_arity later *) (* user_lc ignored *) (* user_arity ignored *) check (fun p -> p.mind_nrealargs); (* kelim ignored *) (* listrec ignored *) (* finite done *) (* nparams done *) (* params_ctxt done because part of the inductive types *) (* Don't check the sort of the type if polymorphic *) let cst = check_inductive_type cst env (type_of_inductive env (mib1,p1)) (type_of_inductive env (mib2,p2)) in cst in let check_cons_types i cst p1 p2 = array_fold_left2 (fun cst t1 t2 -> check_conv cst conv env t1 t2) cst (arities_of_specif kn (mib1,p1)) (arities_of_specif kn (mib2,p2)) in let check f = if f mib1 <> f mib2 then error () in check (fun mib -> mib.mind_finite); check (fun mib -> mib.mind_ntypes); assert (mib1.mind_hyps=[] && mib2.mind_hyps=[]); assert (Array.length mib1.mind_packets >= 1 && Array.length mib2.mind_packets >= 1); (* Check that the expected numbers of uniform parameters are the same *) (* No need to check the contexts of parameters: it is checked *) (* at the time of checking the inductive arities in check_packet. *) (* Notice that we don't expect the local definitions to match: only *) (* the inductive types and constructors types have to be convertible *) check (fun mib -> mib.mind_nparams); begin match mib2.mind_equiv with | None -> () | Some kn2' -> let kn2 = scrape_mind env kn2' in let kn1 = match mib1.mind_equiv with None -> kn | Some kn1' -> scrape_mind env kn1' in if kn1 <> kn2 then error () end; (* we check that records and their field names are preserved. *) check (fun mib -> mib.mind_record); if mib1.mind_record then begin let rec names_prod_letin t = match kind_of_term t with | Prod(n,_,t) -> n::(names_prod_letin t) | LetIn(n,_,_,t) -> n::(names_prod_letin t) | Cast(t,_,_) -> names_prod_letin t | _ -> [] in assert (Array.length mib1.mind_packets = 1); assert (Array.length mib2.mind_packets = 1); assert (Array.length mib1.mind_packets.(0).mind_user_lc = 1); assert (Array.length mib2.mind_packets.(0).mind_user_lc = 1); check (fun mib -> names_prod_letin mib.mind_packets.(0).mind_user_lc.(0)); end; (* we first check simple things *) let cst = array_fold_left2 check_packet cst mib1.mind_packets mib2.mind_packets in (* and constructor types in the end *) let cst = array_fold_left2_i check_cons_types cst mib1.mind_packets mib2.mind_packets in cst let check_constant cst env msid1 l info1 cb2 spec2 = let error () = error_not_match l spec2 in let check_conv cst f = check_conv_error error cst f in let check_type cst env t1 t2 = (* If the type of a constant is generated, it may mention non-variable algebraic universes that the general conversion algorithm is not ready to handle. Anyway, generated types of constants are functions of the body of the constant. If the bodies are the same in environments that are subtypes one of the other, the types are subtypes too (i.e. if Gamma <= Gamma', Gamma |- A |> T, Gamma |- A' |> T' and Gamma |- A=A' then T <= T'). Hence they don't have to be checked again *) let t1,t2 = if Sign.isArity t2 then let (ctx2,s2) = Sign.destArity t2 in match s2 with | Type v when not (is_univ_variable v) -> (* The type in the interface is inferred and is made of algebraic universes *) begin try let (ctx1,s1) = dest_arity env t1 in match s1 with | Type u when not (is_univ_variable u) -> (* Both types are inferred, no need to recheck them. We cheat and collapse the types to Prop *) Sign.mkArity (ctx1,prop_sort), Sign.mkArity (ctx2,prop_sort) | Prop _ -> (* The type in the interface is inferred, it may be the case that the type in the implementation is smaller because the body is more reduced. We safely collapse the upper type to Prop *) Sign.mkArity (ctx1,prop_sort), Sign.mkArity (ctx2,prop_sort) | Type _ -> (* The type in the interface is inferred and the type in the implementation is not inferred or is inferred but from a more reduced body so that it is just a variable. Since constraints of the form "univ <= max(...)" are not expressible in the system of algebraic universes: we fail (the user has to use an explicit type in the interface *) error () with UserError _ (* "not an arity" *) -> error () end | _ -> t1,t2 else (t1,t2) in check_conv cst conv_leq env t1 t2 in match info1 with | Constant cb1 -> assert (cb1.const_hyps=[] && cb2.const_hyps=[]) ; (*Start by checking types*) let typ1 = Typeops.type_of_constant_type env cb1.const_type in let typ2 = Typeops.type_of_constant_type env cb2.const_type in let cst = check_type cst env typ1 typ2 in let con = make_con (MPself msid1) empty_dirpath l in let cst = if cb2.const_opaque then match cb2.const_body with | None -> cst | Some lc2 -> let c2 = Declarations.force lc2 in let c1 = match cb1.const_body with | Some lc1 -> let c = Declarations.force lc1 in begin match (kind_of_term c) with Const n -> let cb = lookup_constant n env in (match cb.const_opaque, cb.const_body with | true, Some lc1 -> Declarations.force lc1 | _,_ -> c) | _ -> c end | None -> mkConst con in check_conv cst conv env c1 c2 else match cb2.const_body with | None -> cst | Some lc2 -> let c2 = Declarations.force lc2 in let c1 = match cb1.const_body with | Some lc1 -> Declarations.force lc1 | None -> mkConst con in check_conv cst conv env c1 c2 in cst | IndType ((kn,i),mind1) -> ignore (Util.error ( "The kernel does not recognize yet that a parameter can be " ^ "instantiated by an inductive type. Hint: you can rename the " ^ "inductive type and give a definition to map the old name to the new " ^ "name.")); assert (mind1.mind_hyps=[] && cb2.const_hyps=[]) ; if cb2.const_body <> None then error () ; let arity1 = type_of_inductive env (mind1,mind1.mind_packets.(i)) in let typ2 = Typeops.type_of_constant_type env cb2.const_type in check_conv cst conv_leq env arity1 typ2 | IndConstr (((kn,i),j) as cstr,mind1) -> ignore (Util.error ( "The kernel does not recognize yet that a parameter can be " ^ "instantiated by a constructor. Hint: you can rename the " ^ "constructor and give a definition to map the old name to the new " ^ "name.")); assert (mind1.mind_hyps=[] && cb2.const_hyps=[]) ; if cb2.const_body <> None then error () ; let ty1 = type_of_constructor cstr (mind1,mind1.mind_packets.(i)) in let ty2 = Typeops.type_of_constant_type env cb2.const_type in check_conv cst conv env ty1 ty2 | _ -> error () let rec check_modules cst env msid1 l msb1 msb2 alias = let mp = (MPdot(MPself msid1,l)) in let mty1 = module_type_of_module (Some mp) msb1 in let alias1,struct_expr = match eval_struct env mty1.typ_expr with | SEBstruct (msid,sign) as str -> update_subst alias (map_msid msid mp),str | _ as str -> empty_subst,str in let mty1 = {mty1 with typ_expr = struct_expr; typ_alias = join alias1 mty1.typ_alias } in let mty2 = module_type_of_module None msb2 in let cst = check_modtypes cst env mty1 mty2 false in cst and check_signatures cst env (msid1,sig1) alias (msid2,sig2') = let mp1 = MPself msid1 in let env = add_signature mp1 sig1 env in let sig1 = subst_structure alias sig1 in let alias1 = update_subst alias (map_msid msid2 mp1) in let sig2 = subst_structure alias1 sig2' in let sig2 = subst_signature_msid msid2 mp1 sig2 in let map1 = make_label_map mp1 sig1 in let check_one_body cst (l,spec2) = let info1 = try Labmap.find l map1 with Not_found -> error_no_such_label_sub l (string_of_msid msid1) (string_of_msid msid2) in match spec2 with | SFBconst cb2 -> check_constant cst env msid1 l info1 cb2 spec2 | SFBmind mib2 -> check_inductive cst env msid1 l info1 mib2 spec2 | SFBmodule msb2 -> begin match info1 with | Module msb -> check_modules cst env msid1 l msb msb2 alias | Alias mp ->let msb = {mod_expr = Some (SEBident mp); mod_type = Some (eval_struct env (SEBident mp)); mod_constraints = Constraint.empty; mod_alias = (lookup_modtype mp env).typ_alias; mod_retroknowledge = []} in check_modules cst env msid1 l msb msb2 alias | _ -> error_not_match l spec2 end | SFBalias (mp,_) -> begin match info1 with | Alias mp1 -> check_modpath_equiv env mp mp1; cst | Module msb -> let msb1 = {mod_expr = Some (SEBident mp); mod_type = Some (eval_struct env (SEBident mp)); mod_constraints = Constraint.empty; mod_alias = (lookup_modtype mp env).typ_alias; mod_retroknowledge = []} in check_modules cst env msid1 l msb msb1 alias | _ -> error_not_match l spec2 end | SFBmodtype mtb2 -> let mtb1 = match info1 with | Modtype mtb -> mtb | _ -> error_not_match l spec2 in check_modtypes cst env mtb1 mtb2 true in List.fold_left check_one_body cst sig2 and check_modtypes cst env mtb1 mtb2 equiv = if mtb1==mtb2 then cst else (* just in case :) *) let mtb1',mtb2'= (match mtb1.typ_strength with None -> eval_struct env mtb1.typ_expr, eval_struct env mtb2.typ_expr | Some mp -> strengthen env mtb1.typ_expr mp, eval_struct env mtb2.typ_expr) in let rec check_structure cst env str1 str2 equiv = match str1, str2 with | SEBstruct (msid1,list1), SEBstruct (msid2,list2) -> let cst = check_signatures cst env (msid1,list1) mtb1.typ_alias (msid2,list2) in if equiv then check_signatures cst env (msid2,list2) mtb2.typ_alias (msid1,list1) else cst | SEBfunctor (arg_id1,arg_t1,body_t1), SEBfunctor (arg_id2,arg_t2,body_t2) -> let cst = check_modtypes cst env arg_t2 arg_t1 equiv in (* contravariant *) let env = add_module (MPbound arg_id2) (module_body_of_type arg_t2) env in let body_t1' = (* since we are just checking well-typedness we do not need to expand any constant. Hence the identity resolver. *) subst_struct_expr (map_mbid arg_id1 (MPbound arg_id2) None) body_t1 in check_structure cst env (eval_struct env body_t1') (eval_struct env body_t2) equiv | _ , _ -> error_incompatible_modtypes mtb1 mtb2 in if mtb1'== mtb2' then cst else check_structure cst env mtb1' mtb2' equiv let check_subtypes env sup super = check_modtypes Constraint.empty env sup super false