(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* true | Zupdate _::s -> is_empty_stack s | Zshift _::s -> is_empty_stack s | _ -> false (* Compute the lift to be performed on a term placed in a given stack *) let el_stack el stk = let n = List.fold_left (fun i z -> match z with Zshift n -> i+n | _ -> i) 0 stk in el_shft n el let compare_stack_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> Int.equal bal 0 | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2 | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2 | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2 | (Zproj p1::s1, Zproj p2::s2) -> Int.equal bal 0 && compare_rec 0 s1 s2 | (ZcaseT(c1,_,_,_)::s1, ZcaseT(c2,_,_,_)::s2) -> Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | [], _ :: _ | (Zproj _ | ZcaseT _ | Zfix _) :: _, _ -> false in compare_rec 0 stk1 stk2 type lft_constr_stack_elt = Zlapp of (lift * fconstr) array | Zlproj of Projection.Repr.t * lift | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * fconstr * fconstr array and lft_constr_stack = lft_constr_stack_elt list let rec zlapp v = function Zlapp v2 :: s -> zlapp (Array.append v v2) s | s -> Zlapp v :: s (** Hand-unrolling of the map function to bypass the call to the generic array allocation. Type annotation is required to tell OCaml that the array does not contain floats. *) let map_lift (l : lift) (v : fconstr array) = match v with | [||] -> assert false | [|c0|] -> [|(l, c0)|] | [|c0; c1|] -> [|(l, c0); (l, c1)|] | [|c0; c1; c2|] -> [|(l, c0); (l, c1); (l, c2)|] | [|c0; c1; c2; c3|] -> [|(l, c0); (l, c1); (l, c2); (l, c3)|] | v -> Array.Fun1.map (fun l t -> (l, t)) l v let pure_stack lfts stk = let rec pure_rec lfts stk = match stk with [] -> (lfts,[]) | zi::s -> (match (zi,pure_rec lfts s) with (Zupdate _,lpstk) -> lpstk | (Zshift n,(l,pstk)) -> (el_shft n l, pstk) | (Zapp a, (l,pstk)) -> (l,zlapp (map_lift l a) pstk) | (Zproj p, (l,pstk)) -> (l, Zlproj (p,l)::pstk) | (Zfix(fx,a),(l,pstk)) -> let (lfx,pa) = pure_rec l a in (l, Zlfix((lfx,fx),pa)::pstk) | (ZcaseT(ci,p,br,e),(l,pstk)) -> (l,Zlcase(ci,l,mk_clos e p,Array.map (mk_clos e) br)::pstk)) in snd (pure_rec lfts stk) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) let whd_betaiota env t = match kind t with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ | LetIn _ -> t | _ -> whd_val (create_clos_infos betaiota env) (create_tab ()) (inject t) end | _ -> whd_val (create_clos_infos betaiota env) (create_tab ()) (inject t) let nf_betaiota env t = norm_val (create_clos_infos betaiota env) (create_tab ()) (inject t) let whd_betaiotazeta env x = match kind x with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> x | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ -> x | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (create_tab ()) (inject x) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (create_tab ()) (inject x) let whd_all env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Const _ |Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos all env) (create_tab ()) (inject t) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos all env) (create_tab ()) (inject t) let whd_allnolet env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | LetIn _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | App _ | Const _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos allnolet env) (create_tab ()) (inject t) end | Rel _ | Cast _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos allnolet env) (create_tab ()) (inject t) (********************************************************************) (* Conversion *) (********************************************************************) (* Conversion utility functions *) (* functions of this type are called from the kernel *) type 'a kernel_conversion_function = env -> 'a -> 'a -> unit (* functions of this type can be called from outside the kernel *) type 'a extended_conversion_function = ?l2r:bool -> ?reds:Names.transparent_state -> env -> ?evars:((existential->constr option) * UGraph.t) -> 'a -> 'a -> unit exception NotConvertible exception NotConvertibleVect of int (* Convertibility of sorts *) (* The sort cumulativity is Prop <= Set <= Type 1 <= ... <= Type i <= ... and this holds whatever Set is predicative or impredicative *) type conv_pb = | CONV | CUMUL let is_cumul = function CUMUL -> true | CONV -> false type 'a universe_compare = { (* Might raise NotConvertible *) compare_sorts : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a -> 'a; compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a; compare_cumul_instances : conv_pb -> Univ.Variance.t array -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a } type 'a universe_state = 'a * 'a universe_compare type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.Constraint.t let sort_cmp_universes env pb s0 s1 (u, check) = (check.compare_sorts env pb s0 s1 u, check) (* [flex] should be true for constants, false for inductive types and constructors. *) let convert_instances ~flex u u' (s, check) = (check.compare_instances ~flex u u' s, check) let get_cumulativity_constraints cv_pb variance u u' = match cv_pb with | CONV -> Univ.enforce_eq_variance_instances variance u u' Univ.Constraint.empty | CUMUL -> Univ.enforce_leq_variance_instances variance u u' Univ.Constraint.empty let inductive_cumulativity_arguments (mind,ind) = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs let convert_inductives_gen cmp_instances cmp_cumul cv_pb (mind,ind) nargs u1 u2 s = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> assert (Univ.Instance.length u1 = 0 && Univ.Instance.length u2 = 0); s | Declarations.Polymorphic_ind _ -> cmp_instances u1 u2 s | Declarations.Cumulative_ind cumi -> let num_param_arity = inductive_cumulativity_arguments (mind,ind) in if not (Int.equal num_param_arity nargs) then cmp_instances u1 u2 s else cmp_cumul cv_pb (Univ.ACumulativityInfo.variance cumi) u1 u2 s let convert_inductives cv_pb ind nargs u1 u2 (s, check) = convert_inductives_gen (check.compare_instances ~flex:false) check.compare_cumul_instances cv_pb ind nargs u1 u2 s, check let constructor_cumulativity_arguments (mind, ind, ctor) = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_consnrealargs.(ctor - 1) let convert_constructors_gen cmp_instances cmp_cumul (mind, ind, cns) nargs u1 u2 s = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> assert (Univ.Instance.length u1 = 0 && Univ.Instance.length u2 = 0); s | Declarations.Polymorphic_ind _ -> cmp_instances u1 u2 s | Declarations.Cumulative_ind cumi -> let num_cnstr_args = constructor_cumulativity_arguments (mind,ind,cns) in if not (Int.equal num_cnstr_args nargs) then cmp_instances u1 u2 s else (** By invariant, both constructors have a common supertype, so they are convertible _at that type_. *) let variance = Array.make (Univ.Instance.length u1) Univ.Variance.Irrelevant in cmp_cumul CONV variance u1 u2 s let convert_constructors ctor nargs u1 u2 (s, check) = convert_constructors_gen (check.compare_instances ~flex:false) check.compare_cumul_instances ctor nargs u1 u2 s, check let conv_table_key infos k1 k2 cuniv = if k1 == k2 then cuniv else match k1, k2 with | ConstKey (cst, u), ConstKey (cst', u') when Constant.equal cst cst' -> if Univ.Instance.equal u u' then cuniv else let flex = evaluable_constant cst (info_env infos) && RedFlags.red_set (info_flags infos) (RedFlags.fCONST cst) in convert_instances ~flex u u' cuniv | VarKey id, VarKey id' when Id.equal id id' -> cuniv | RelKey n, RelKey n' when Int.equal n n' -> cuniv | _ -> raise NotConvertible let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv = let rec cmp_rec pstk1 pstk2 cuniv = match (pstk1,pstk2) with | (z1::s1, z2::s2) -> let cu1 = cmp_rec s1 s2 cuniv in (match (z1,z2) with | (Zlapp a1,Zlapp a2) -> Array.fold_right2 f a1 a2 cu1 | (Zlproj (c1,l1),Zlproj (c2,l2)) -> if not (Projection.Repr.equal c1 c2) then raise NotConvertible else cu1 | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> let cu2 = f fx1 fx2 cu1 in cmp_rec a1 a2 cu2 | (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) -> if not (fmind ci1.ci_ind ci2.ci_ind) then raise NotConvertible; let cu2 = f (l1,p1) (l2,p2) cu1 in Array.fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2 | _ -> assert false) | _ -> cuniv in if compare_stack_shape stk1 stk2 then cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv else raise NotConvertible type conv_tab = { cnv_inf : clos_infos; lft_tab : fconstr infos_tab; rgt_tab : fconstr infos_tab; } (** Invariant: for any tl ∈ lft_tab and tr ∈ rgt_tab, there is no mutable memory location contained both in tl and in tr. *) (** The same heap separation invariant must hold for the fconstr arguments passed to each respective side of the conversion function below. *) (* Conversion between [lft1]term1 and [lft2]term2 *) let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv = eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv (* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *) and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv = Control.check_for_interrupt (); (* First head reduce both terms *) let ninfos = infos_with_reds infos.cnv_inf betaiotazeta in let (hd1, v1 as appr1) = whd_stack ninfos infos.lft_tab (fst st1) (snd st1) in let (hd2, v2 as appr2) = whd_stack ninfos infos.rgt_tab (fst st2) (snd st2) in let appr1 = (lft1, appr1) and appr2 = (lft2, appr2) in (** We delay the computation of the lifts that apply to the head of the term with [el_stack] inside the branches where they are actually used. *) match (fterm_of hd1, fterm_of hd2) with (* case of leaves *) | (FAtom a1, FAtom a2) -> (match kind a1, kind a2 with | (Sort s1, Sort s2) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (Sort)."); sort_cmp_universes (env_of_infos infos.cnv_inf) cv_pb s1 s2 cuniv | (Meta n, Meta m) -> if Int.equal n m then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | _ -> raise NotConvertible) | (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) -> if Evar.equal ev1 ev2 then let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in convert_vect l2r infos el1 el2 (Array.map (mk_clos env1) args1) (Array.map (mk_clos env2) args2) cuniv else raise NotConvertible (* 2 index known to be bound to no constant *) | (FRel n, FRel m) -> let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in if Int.equal (reloc_rel n el1) (reloc_rel m el2) then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* 2 constants, 2 local defined vars or 2 defined rels *) | (FFlex fl1, FFlex fl2) -> (try let cuniv = conv_table_key infos.cnv_inf fl1 fl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with NotConvertible | Univ.UniverseInconsistency _ -> (* else the oracle tells which constant is to be expanded *) let oracle = CClosure.oracle_of_infos infos.cnv_inf in let (app1,app2) = if Conv_oracle.oracle_order Univ.out_punivs oracle l2r fl1 fl2 then match unfold_reference infos.cnv_inf infos.lft_tab fl1 with | Some def1 -> ((lft1, (def1, v1)), appr2) | None -> (match unfold_reference infos.cnv_inf infos.rgt_tab fl2 with | Some def2 -> (appr1, (lft2, (def2, v2))) | None -> raise NotConvertible) else match unfold_reference infos.cnv_inf infos.rgt_tab fl2 with | Some def2 -> (appr1, (lft2, (def2, v2))) | None -> (match unfold_reference infos.cnv_inf infos.lft_tab fl1 with | Some def1 -> ((lft1, (def1, v1)), appr2) | None -> raise NotConvertible) in eqappr cv_pb l2r infos app1 app2 cuniv) | (FProj (p1,c1), FProj (p2, c2)) -> (* Projections: prefer unfolding to first-order unification, which will happen naturally if the terms c1, c2 are not in constructor form *) (match unfold_projection infos.cnv_inf p1 with | Some s1 -> eqappr cv_pb l2r infos (lft1, (c1, (s1 :: v1))) appr2 cuniv | None -> match unfold_projection infos.cnv_inf p2 with | Some s2 -> eqappr cv_pb l2r infos appr1 (lft2, (c2, (s2 :: v2))) cuniv | None -> if Projection.Repr.equal (Projection.repr p1) (Projection.repr p2) && compare_stack_shape v1 v2 then let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let u1 = ccnv CONV l2r infos el1 el2 c1 c2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 u1 else (* Two projections in WHNF: unfold *) raise NotConvertible) | (FProj (p1,c1), t2) -> (match unfold_projection infos.cnv_inf p1 with | Some s1 -> eqappr cv_pb l2r infos (lft1, (c1, (s1 :: v1))) appr2 cuniv | None -> (match t2 with | FFlex fl2 -> (match unfold_reference infos.cnv_inf infos.rgt_tab fl2 with | Some def2 -> eqappr cv_pb l2r infos appr1 (lft2, (def2, v2)) cuniv | None -> raise NotConvertible) | _ -> raise NotConvertible)) | (t1, FProj (p2,c2)) -> (match unfold_projection infos.cnv_inf p2 with | Some s2 -> eqappr cv_pb l2r infos appr1 (lft2, (c2, (s2 :: v2))) cuniv | None -> (match t1 with | FFlex fl1 -> (match unfold_reference infos.cnv_inf infos.lft_tab fl1 with | Some def1 -> eqappr cv_pb l2r infos (lft1, (def1, v1)) appr2 cuniv | None -> raise NotConvertible) | _ -> raise NotConvertible)) (* other constructors *) | (FLambda _, FLambda _) -> (* Inconsistency: we tolerate that v1, v2 contain shift and update but we throw them away *) if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FLambda)."); let (_,ty1,bd1) = destFLambda mk_clos hd1 in let (_,ty2,bd2) = destFLambda mk_clos hd2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 cuniv | (FProd (_,c1,c2), FProd (_,c'1,c'2)) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FProd)."); (* Luo's system *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 cuniv (* Eta-expansion on the fly *) | (FLambda _, _) -> let () = match v1 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (_,_ty1,bd1) = destFLambda mk_clos hd1 in eqappr CONV l2r infos (el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv | (_, FLambda _) -> let () = match v2 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (_,_ty2,bd2) = destFLambda mk_clos hd2 in eqappr CONV l2r infos (el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv (* only one constant, defined var or defined rel *) | (FFlex fl1, c2) -> (match unfold_reference infos.cnv_inf infos.lft_tab fl1 with | Some def1 -> (** By virtue of the previous case analyses, we know [c2] is rigid. Conversion check to rigid terms eventually implies full weak-head reduction, so instead of repeatedly performing small-step unfoldings, we perform reduction with all flags on. *) let all = RedFlags.red_add_transparent all (RedFlags.red_transparent (info_flags infos.cnv_inf)) in let r1 = whd_stack (infos_with_reds infos.cnv_inf all) infos.lft_tab def1 v1 in eqappr cv_pb l2r infos (lft1, r1) appr2 cuniv | None -> match c2 with | FConstruct ((ind2,j2),u2) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos.cnv_inf) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) | (c1, FFlex fl2) -> (match unfold_reference infos.cnv_inf infos.rgt_tab fl2 with | Some def2 -> (** Symmetrical case of above. *) let all = RedFlags.red_add_transparent all (RedFlags.red_transparent (info_flags infos.cnv_inf)) in let r2 = whd_stack (infos_with_reds infos.cnv_inf all) infos.rgt_tab def2 v2 in eqappr cv_pb l2r infos appr1 (lft2, r2) cuniv | None -> match c1 with | FConstruct ((ind1,j1),u1) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos.cnv_inf) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) (* Inductive types: MutInd MutConstruct Fix Cofix *) | (FInd (ind1,u1), FInd (ind2,u2)) -> if eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos.cnv_inf) in let nargs = CClosure.stack_args_size v1 in if not (Int.equal nargs (CClosure.stack_args_size v2)) then raise NotConvertible else let cuniv = convert_inductives cv_pb (mind, snd ind1) nargs u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) -> if Int.equal j1 j2 && eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos.cnv_inf) in let nargs = CClosure.stack_args_size v1 in if not (Int.equal nargs (CClosure.stack_args_size v2)) then raise NotConvertible else let cuniv = convert_constructors (mind, snd ind1, j1) nargs u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Eta expansion of records *) | (FConstruct ((ind1,j1),u1), _) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos.cnv_inf) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (_, FConstruct ((ind2,j2),u2)) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos.cnv_inf) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (FFix (((op1, i1),(_,tys1,cl1)),e1), FFix(((op2, i2),(_,tys2,cl2)),e2)) -> if Int.equal i1 i2 && Array.equal Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) -> if Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *) | ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_) | (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED) ) | (FCast _, _) | (_, FCast _) -> assert false | (FRel _ | FAtom _ | FInd _ | FFix _ | FCoFix _ | FProd _ | FEvar _), _ -> raise NotConvertible and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv = compare_stacks (fun (l1,t1) (l2,t2) cuniv -> ccnv CONV l2r infos l1 l2 t1 t2 cuniv) (eq_ind) lft1 stk1 lft2 stk2 cuniv and convert_vect l2r infos lft1 lft2 v1 v2 cuniv = let lv1 = Array.length v1 in let lv2 = Array.length v2 in if Int.equal lv1 lv2 then let rec fold n cuniv = if n >= lv1 then cuniv else let cuniv = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) cuniv in fold (n+1) cuniv in fold 0 cuniv else raise NotConvertible let clos_gen_conv trans cv_pb l2r evars env univs t1 t2 = let reds = CClosure.RedFlags.red_add_transparent betaiotazeta trans in let infos = create_clos_infos ~evars reds env in let infos = { cnv_inf = infos; lft_tab = create_tab (); rgt_tab = create_tab (); } in ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) univs let check_eq univs u u' = if not (UGraph.check_eq univs u u') then raise NotConvertible let check_leq univs u u' = if not (UGraph.check_leq univs u u') then raise NotConvertible let check_sort_cmp_universes env pb s0 s1 univs = let open Sorts in if not (type_in_type env) then let check_pb u0 u1 = match pb with | CUMUL -> check_leq univs u0 u1 | CONV -> check_eq univs u0 u1 in match (s0,s1) with | Prop, Prop | Set, Set -> () | Prop, (Set | Type _) -> if not (is_cumul pb) then raise NotConvertible | Set, Prop -> raise NotConvertible | Set, Type u -> check_pb Univ.type0_univ u | Type u, Prop -> raise NotConvertible | Type u, Set -> check_pb u Univ.type0_univ | Type u0, Type u1 -> check_pb u0 u1 let checked_sort_cmp_universes env pb s0 s1 univs = check_sort_cmp_universes env pb s0 s1 univs; univs let check_convert_instances ~flex u u' univs = if UGraph.check_eq_instances univs u u' then univs else raise NotConvertible (* general conversion and inference functions *) let check_inductive_instances cv_pb variance u1 u2 univs = let csts = get_cumulativity_constraints cv_pb variance u1 u2 in if (UGraph.check_constraints csts univs) then univs else raise NotConvertible let checked_universes = { compare_sorts = checked_sort_cmp_universes; compare_instances = check_convert_instances; compare_cumul_instances = check_inductive_instances; } let infer_eq (univs, cstrs as cuniv) u u' = if UGraph.check_eq univs u u' then cuniv else univs, (Univ.enforce_eq u u' cstrs) let infer_leq (univs, cstrs as cuniv) u u' = if UGraph.check_leq univs u u' then cuniv else let cstrs', _ = UGraph.enforce_leq_alg u u' univs in univs, Univ.Constraint.union cstrs cstrs' let infer_cmp_universes env pb s0 s1 univs = if type_in_type env then univs else let open Sorts in let infer_pb u0 u1 = match pb with | CUMUL -> infer_leq univs u0 u1 | CONV -> infer_eq univs u0 u1 in match (s0,s1) with | Prop, Prop | Set, Set -> univs | Prop, (Set | Type _) -> if not (is_cumul pb) then raise NotConvertible else univs | Set, Prop -> raise NotConvertible | Set, Type u -> infer_pb Univ.type0_univ u | Type u, Prop -> raise NotConvertible | Type u, Set -> infer_pb u Univ.type0_univ | Type u0, Type u1 -> infer_pb u0 u1 let infer_convert_instances ~flex u u' (univs,cstrs) = let cstrs' = if flex then if UGraph.check_eq_instances univs u u' then cstrs else raise NotConvertible else Univ.enforce_eq_instances u u' cstrs in (univs, cstrs') let infer_inductive_instances cv_pb variance u1 u2 (univs,csts') = let csts = get_cumulativity_constraints cv_pb variance u1 u2 in (univs, Univ.Constraint.union csts csts') let inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare = { compare_sorts = infer_cmp_universes; compare_instances = infer_convert_instances; compare_cumul_instances = infer_inductive_instances; } let gen_conv cv_pb l2r reds env evars univs t1 t2 = let b = if cv_pb = CUMUL then leq_constr_univs univs t1 t2 else eq_constr_univs univs t1 t2 in if b then () else let _ = clos_gen_conv reds cv_pb l2r evars env (univs, checked_universes) t1 t2 in () (* Profiling *) let gen_conv cv_pb ?(l2r=false) ?(reds=full_transparent_state) env ?(evars=(fun _->None), universes env) = let evars, univs = evars in if Flags.profile then let fconv_universes_key = CProfile.declare_profile "trans_fconv_universes" in CProfile.profile8 fconv_universes_key gen_conv cv_pb l2r reds env evars univs else gen_conv cv_pb l2r reds env evars univs let conv = gen_conv CONV let conv_leq = gen_conv CUMUL let generic_conv cv_pb ~l2r evars reds env univs t1 t2 = let (s, _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in s let infer_conv_universes cv_pb l2r evars reds env univs t1 t2 = let b, cstrs = if cv_pb == CUMUL then Constr.leq_constr_univs_infer univs t1 t2 else Constr.eq_constr_univs_infer univs t1 t2 in if b then cstrs else let univs = ((univs, Univ.Constraint.empty), inferred_universes) in let ((_,cstrs), _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in cstrs (* Profiling *) let infer_conv_universes = if Flags.profile then let infer_conv_universes_key = CProfile.declare_profile "infer_conv_universes" in CProfile.profile8 infer_conv_universes_key infer_conv_universes else infer_conv_universes let infer_conv ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state) env univs t1 t2 = infer_conv_universes CONV l2r evars ts env univs t1 t2 let infer_conv_leq ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state) env univs t1 t2 = infer_conv_universes CUMUL l2r evars ts env univs t1 t2 let default_conv cv_pb ?(l2r=false) env t1 t2 = gen_conv cv_pb env t1 t2 let default_conv_leq = default_conv CUMUL (* let convleqkey = CProfile.declare_profile "Kernel_reduction.conv_leq";; let conv_leq env t1 t2 = CProfile.profile4 convleqkey conv_leq env t1 t2;; let convkey = CProfile.declare_profile "Kernel_reduction.conv";; let conv env t1 t2 = CProfile.profile4 convleqkey conv env t1 t2;; *) (* Application with on-the-fly reduction *) let beta_applist c l = let rec app subst c l = match kind c, l with | Lambda(_,_,c), arg::l -> app (arg::subst) c l | _ -> Term.applist (substl subst c, l) in app [] c l let beta_appvect c v = beta_applist c (Array.to_list v) let beta_app c a = beta_applist c [a] (* Compatibility *) let betazeta_appvect = Term.lambda_appvect_assum (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) (* pseudo-reduction rule: * [hnf_prod_app env (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env t n = match kind (whd_all env t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.") let hnf_prod_applist env t nl = List.fold_left (hnf_prod_app env) t nl let hnf_prod_applist_assum env n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind (whd_allnolet env t), l with | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough prod/let's.") in app n [] c l (* Dealing with arities *) let dest_prod env = let rec decrec env m c = let t = whd_all env c in match kind t with | Prod (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (Context.Rel.add d m) c0 | _ -> m,t in decrec env Context.Rel.empty let dest_lam env = let rec decrec env m c = let t = whd_all env c in match kind t with | Lambda (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (Context.Rel.add d m) c0 | _ -> m,t in decrec env Context.Rel.empty (* The same but preserving lets in the context, not internal ones. *) let dest_prod_assum env = let rec prodec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Prod (x,t,c) -> let d = LocalAssum (x,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | _ -> let rty' = whd_all env rty in if Constr.equal rty' rty then l, rty else prodec_rec env l rty' in prodec_rec env Context.Rel.empty let dest_lam_assum env = let rec lamec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Lambda (x,t,c) -> let d = LocalAssum (x,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | _ -> l,rty in lamec_rec env Context.Rel.empty exception NotArity let dest_arity env c = let l, c = dest_prod_assum env c in match kind c with | Sort s -> l,s | _ -> raise NotArity let is_arity env c = try let _ = dest_arity env c in true with NotArity -> false let eta_expand env t ty = let ctxt, codom = dest_prod env ty in let ctxt',t = dest_lam env t in let d = Context.Rel.nhyps ctxt - Context.Rel.nhyps ctxt' in let eta_args = List.rev_map mkRel (List.interval 1 d) in let t = Term.applistc (Vars.lift d t) eta_args in let t = Term.it_mkLambda_or_LetIn t (List.firstn d ctxt) in Term.it_mkLambda_or_LetIn t ctxt'