(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* "^string_of_label l'^" !") let error_result_must_be_signature () = error "The result module type must be a signature." let error_signature_expected mtb = error "Signature expected." let error_no_module_to_end _ = error "No open module to end." let error_no_modtype_to_end _ = error "No open module type to end." let error_not_a_modtype_loc loc s = user_err_loc (loc,"",str ("\""^s^"\" is not a module type.")) let error_not_a_module_loc loc s = user_err_loc (loc,"",str ("\""^s^"\" is not a module.")) let error_not_a_module_or_modtype_loc loc s = user_err_loc (loc,"",str ("\""^s^"\" is not a module or module type.")) let error_not_a_module s = error_not_a_module_loc dummy_loc s let error_not_a_constant l = error ("\""^(string_of_label l)^"\" is not a constant.") let error_with_incorrect l = error ("Incorrect constraint for label \""^(string_of_label l)^"\".") let error_a_generative_module_expected l = error ("The module " ^ string_of_label l ^ " is not generative. Only " ^ "component of generative modules can be changed using the \"with\" " ^ "construct.") let error_local_context lo = match lo with None -> error ("The local context is not empty.") | (Some l) -> error ("The local context of the component "^ (string_of_label l)^" is not empty.") let error_no_such_label_sub l l1 = error ("The field "^(string_of_label l)^" is missing in "^l1^".") let error_with_in_module _ = error "The syntax \"with\" is not allowed for modules." let error_application_to_module_type _ = error "Module application to a module type." let destr_functor env mtb = match mtb with | SEBfunctor (arg_id,arg_t,body_t) -> (arg_id,arg_t,body_t) | _ -> error_not_a_functor mtb let is_functor = function | SEBfunctor (arg_id,arg_t,body_t) -> true | _ -> false let module_body_of_type mp mtb = { mod_mp = mp; mod_type = mtb.typ_expr; mod_type_alg = mtb.typ_expr_alg; mod_expr = None; mod_constraints = mtb.typ_constraints; mod_delta = mtb.typ_delta; mod_retroknowledge = []} let check_modpath_equiv env mp1 mp2 = if mp1=mp2 then () else let mb1=lookup_module mp1 env in let mb2=lookup_module mp2 env in if (delta_of_mp mb1.mod_delta mp1)=(delta_of_mp mb2.mod_delta mp2) then () else error_not_equal mp1 mp2 let rec subst_with_body sub = function | With_module_body(id,mp) -> With_module_body(id,subst_mp sub mp) | With_definition_body(id,cb) -> With_definition_body( id,subst_const_body sub cb) and subst_modtype sub do_delta mtb= let mp = subst_mp sub mtb.typ_mp in let sub = add_mp mtb.typ_mp mp empty_delta_resolver sub in let typ_expr' = subst_struct_expr sub do_delta mtb.typ_expr in let typ_alg' = Option.smartmap (subst_struct_expr sub (fun x y-> x)) mtb.typ_expr_alg in let mtb_delta = do_delta mtb.typ_delta sub in if typ_expr'==mtb.typ_expr && typ_alg'==mtb.typ_expr_alg && mp==mtb.typ_mp then mtb else {mtb with typ_mp = mp; typ_expr = typ_expr'; typ_expr_alg = typ_alg'; typ_delta = mtb_delta} and subst_structure sub do_delta sign = let subst_body = function SFBconst cb -> SFBconst (subst_const_body sub cb) | SFBmind mib -> SFBmind (subst_mind sub mib) | SFBmodule mb -> SFBmodule (subst_module sub do_delta mb) | SFBmodtype mtb -> SFBmodtype (subst_modtype sub do_delta mtb) in List.map (fun (l,b) -> (l,subst_body b)) sign and subst_module sub do_delta mb = let mp = subst_mp sub mb.mod_mp in let sub = if is_functor mb.mod_type && not(mp=mb.mod_mp) then add_mp mb.mod_mp mp empty_delta_resolver sub else sub in let id_delta = (fun x y-> x) in let mtb',me' = let mtb = subst_struct_expr sub do_delta mb.mod_type in match mb.mod_expr with None -> mtb,None | Some me -> if me==mb.mod_type then mtb,Some mtb else mtb,Option.smartmap (subst_struct_expr sub id_delta) mb.mod_expr in let typ_alg' = Option.smartmap (subst_struct_expr sub id_delta) mb.mod_type_alg in let mb_delta = do_delta mb.mod_delta sub in if mtb'==mb.mod_type && mb.mod_expr == me' && mb_delta == mb.mod_delta && mp == mb.mod_mp then mb else { mb with mod_mp = mp; mod_expr = me'; mod_type_alg = typ_alg'; mod_type=mtb'; mod_delta = mb_delta} and subst_struct_expr sub do_delta = function | SEBident mp -> SEBident (subst_mp sub mp) | SEBfunctor (mbid, mtb, meb') -> SEBfunctor(mbid,subst_modtype sub do_delta mtb ,subst_struct_expr sub do_delta meb') | SEBstruct (str)-> SEBstruct( subst_structure sub do_delta str) | SEBapply (meb1,meb2,cst)-> SEBapply(subst_struct_expr sub do_delta meb1, subst_struct_expr sub do_delta meb2, cst) | SEBwith (meb,wdb)-> SEBwith(subst_struct_expr sub do_delta meb, subst_with_body sub wdb) let subst_signature subst = subst_structure subst (fun resolver subst-> subst_codom_delta_resolver subst resolver) let subst_struct_expr subst = subst_struct_expr subst (fun resolver subst-> subst_codom_delta_resolver subst resolver) (* spiwack: here comes the function which takes care of importing the retroknowledge declared in the library *) (* lclrk : retroknowledge_action list, rkaction : retroknowledge action *) let add_retroknowledge mp = let perform rkaction env = match rkaction with | Retroknowledge.RKRegister (f, e) -> Environ.register env f (match e with | Const kn -> kind_of_term (mkConst kn) | Ind ind -> kind_of_term (mkInd ind) | _ -> anomaly "Modops.add_retroknowledge: had to import an unsupported kind of term") in fun lclrk env -> (* The order of the declaration matters, for instance (and it's at the time this comment is being written, the only relevent instance) the int31 type registration absolutely needs int31 bits to be registered. Since the local_retroknowledge is stored in reverse order (each new registration is added at the top of the list) we need a fold_right for things to go right (the pun is not intented). So we lose tail recursivity, but the world will have exploded before any module imports 10 000 retroknowledge registration.*) List.fold_right perform lclrk env let rec add_signature mp sign resolver env = let add_one env (l,elem) = let kn = make_kn mp empty_dirpath l in let con = constant_of_kn kn in let mind = mind_of_kn kn in match elem with | SFBconst cb -> let con = constant_of_delta resolver con in Environ.add_constant con cb env | SFBmind mib -> let mind = mind_of_delta resolver mind in Environ.add_mind mind mib env | SFBmodule mb -> add_module mb env (* adds components as well *) | SFBmodtype mtb -> Environ.add_modtype mtb.typ_mp mtb env in List.fold_left add_one env sign and add_module mb env = let mp = mb.mod_mp in let env = Environ.shallow_add_module mp mb env in match mb.mod_type with | SEBstruct (sign) -> add_retroknowledge mp mb.mod_retroknowledge (add_signature mp sign mb.mod_delta env) | SEBfunctor _ -> env | _ -> anomaly "Modops:the evaluation of the structure failed " let strengthen_const env mp_from l cb resolver = match cb.const_opaque, cb.const_body with | false, Some _ -> cb | true, Some _ | _, None -> let con = make_con mp_from empty_dirpath l in let con = constant_of_delta resolver con in let const = mkConst con in let const_subs = Some (Declarations.from_val const) in {cb with const_body = const_subs; const_opaque = false; const_body_code = Cemitcodes.from_val (compile_constant_body env const_subs false false) } let rec strengthen_mod env mp_from mp_to mb = if mp_in_delta mb.mod_mp mb.mod_delta then mb else match mb.mod_type with | SEBstruct (sign) -> let resolve_out,sign_out = strengthen_sig env mp_from sign mp_to mb.mod_delta in { mb with mod_expr = Some (SEBident mp_to); mod_type = SEBstruct(sign_out); mod_type_alg = mb.mod_type_alg; mod_constraints = mb.mod_constraints; mod_delta = add_mp_delta_resolver mp_from mp_to (add_delta_resolver mb.mod_delta resolve_out); mod_retroknowledge = mb.mod_retroknowledge} | SEBfunctor _ -> mb | _ -> anomaly "Modops:the evaluation of the structure failed " and strengthen_sig env mp_from sign mp_to resolver = match sign with | [] -> empty_delta_resolver,[] | (l,SFBconst cb) :: rest -> let item' = l,SFBconst (strengthen_const env mp_from l cb resolver) in let resolve_out,rest' = strengthen_sig env mp_from rest mp_to resolver in resolve_out,item'::rest' | (_,SFBmind _ as item):: rest -> let resolve_out,rest' = strengthen_sig env mp_from rest mp_to resolver in resolve_out,item::rest' | (l,SFBmodule mb) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let mb_out = strengthen_mod env mp_from' mp_to' mb in let item' = l,SFBmodule (mb_out) in let env' = add_module mb_out env in let resolve_out,rest' = strengthen_sig env' mp_from rest mp_to resolver in add_delta_resolver resolve_out mb.mod_delta, item':: rest' | (l,SFBmodtype mty as item) :: rest -> let env' = add_modtype (MPdot(mp_from,l)) mty env in let resolve_out,rest' = strengthen_sig env' mp_from rest mp_to resolver in resolve_out,item::rest' let strengthen env mtb mp = if mp_in_delta mtb.typ_mp mtb.typ_delta then (* in this case mtb has already been strengthened*) mtb else match mtb.typ_expr with | SEBstruct (sign) -> let resolve_out,sign_out = strengthen_sig env mtb.typ_mp sign mp mtb.typ_delta in {mtb with typ_expr = SEBstruct(sign_out); typ_delta = add_delta_resolver mtb.typ_delta (add_mp_delta_resolver mtb.typ_mp mp resolve_out)} | SEBfunctor _ -> mtb | _ -> anomaly "Modops:the evaluation of the structure failed " let module_type_of_module env mp mb = match mp with Some mp -> strengthen env { typ_mp = mp; typ_expr = mb.mod_type; typ_expr_alg = None; typ_constraints = mb.mod_constraints; typ_delta = mb.mod_delta} mp | None -> {typ_mp = mb.mod_mp; typ_expr = mb.mod_type; typ_expr_alg = None; typ_constraints = mb.mod_constraints; typ_delta = mb.mod_delta} let complete_inline_delta_resolver env mp mbid mtb delta = let constants = inline_of_delta mtb.typ_delta in let rec make_inline delta = function | [] -> delta | kn::r -> let kn = replace_mp_in_kn (MPbound mbid) mp kn in let con = constant_of_kn kn in let con' = constant_of_delta delta con in try let constant = lookup_constant con' env in if (not constant.Declarations.const_opaque) then let constr = Option.map Declarations.force constant.Declarations.const_body in if constr = None then (make_inline delta r) else add_inline_constr_delta_resolver con (Option.get constr) (make_inline delta r) else (make_inline delta r) with Not_found -> error_no_such_label_sub (con_label con) (string_of_mp (con_modpath con)) in make_inline delta constants let rec strengthen_and_subst_mod mb subst env mp_from mp_to env resolver = match mb.mod_type with SEBstruct(str) -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in if mb_is_an_alias then subst_module subst (fun resolver subst-> subst_dom_delta_resolver subst resolver) mb else let resolver,new_sig = strengthen_and_subst_struct str subst env mp_from mp_from mp_to false false mb.mod_delta in {mb with mod_mp = mp_to; mod_expr = Some (SEBident mp_from); mod_type = SEBstruct(new_sig); mod_delta = add_mp_delta_resolver mp_to mp_from resolver} | SEBfunctor(arg_id,arg_b,body) -> let subst = add_mp mb.mod_mp mp_to empty_delta_resolver subst in subst_module subst (fun resolver subst-> subst_dom_codom_delta_resolver subst resolver) mb | _ -> anomaly "Modops:the evaluation of the structure failed " and strengthen_and_subst_struct str subst env mp_alias mp_from mp_to alias incl resolver = match str with | [] -> empty_delta_resolver,[] | (l,SFBconst cb) :: rest -> let item' = if alias then l,SFBconst (subst_const_body subst cb) else l,SFBconst (strengthen_const env mp_from l (subst_const_body subst cb) resolver) in let con = make_con mp_from empty_dirpath l in let resolve_out,rest' = strengthen_and_subst_struct rest subst env mp_alias mp_from mp_to alias incl resolver in if incl then let old_name = constant_of_delta resolver con in (add_constant_delta_resolver (constant_of_kn_equiv (make_kn mp_to empty_dirpath l) (canonical_con old_name)) resolve_out), item'::rest' else resolve_out,item'::rest' | (l,SFBmind mib) :: rest -> let item' = l,SFBmind (subst_mind subst mib) in let mind = make_mind mp_from empty_dirpath l in let resolve_out,rest' = strengthen_and_subst_struct rest subst env mp_alias mp_from mp_to alias incl resolver in if incl then let old_name = mind_of_delta resolver mind in (add_mind_delta_resolver (mind_of_kn_equiv (make_kn mp_to empty_dirpath l) (canonical_mind old_name)) resolve_out), item'::rest' else resolve_out,item'::rest' | (l,SFBmodule mb) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let mb_out = if alias then subst_module subst (fun resolver subst -> subst_dom_delta_resolver subst resolver) mb else strengthen_and_subst_mod mb subst env mp_from' mp_to' env resolver in let item' = l,SFBmodule (mb_out) in let env' = add_module mb_out env in let resolve_out,rest' = strengthen_and_subst_struct rest subst env' mp_alias mp_from mp_to alias incl resolver in if is_functor mb_out.mod_type then (add_mp_delta_resolver mp_to' mp_to' resolve_out),item':: rest' else add_delta_resolver resolve_out mb_out.mod_delta, item':: rest' | (l,SFBmodtype mty) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let subst' = add_mp mp_from' mp_to' empty_delta_resolver subst in let mty = subst_modtype subst' (fun resolver subst -> subst_dom_codom_delta_resolver subst' resolver) mty in let env' = add_modtype mp_from' mty env in let resolve_out,rest' = strengthen_and_subst_struct rest subst env' mp_alias mp_from mp_to alias incl resolver in (add_mp_delta_resolver mp_to' mp_to' resolve_out),(l,SFBmodtype mty)::rest' let strengthen_and_subst_mb mb mp env include_b = match mb.mod_type with SEBstruct str -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in (*if mb is an alias then the strengthening is useless (i.e. it is already done)*) let mp_alias = delta_of_mp mb.mod_delta mb.mod_mp in let subst_resolver = map_mp mb.mod_mp mp empty_delta_resolver in let new_resolver = add_mp_delta_resolver mp mp_alias (subst_dom_delta_resolver subst_resolver mb.mod_delta) in let subst = map_mp mb.mod_mp mp new_resolver in let resolver_out,new_sig = strengthen_and_subst_struct str subst env mp_alias mb.mod_mp mp mb_is_an_alias include_b mb.mod_delta in {mb with mod_mp = mp; mod_type = SEBstruct(new_sig); mod_expr = Some (SEBident mb.mod_mp); mod_delta = if include_b then resolver_out else add_delta_resolver new_resolver resolver_out} | SEBfunctor(arg_id,argb,body) -> let subst = map_mp mb.mod_mp mp empty_delta_resolver in subst_module subst (fun resolver subst -> subst_dom_codom_delta_resolver subst resolver) mb | _ -> anomaly "Modops:the evaluation of the structure failed " let subst_modtype_and_resolver mtb mp env = let subst = (map_mp mtb.typ_mp mp empty_delta_resolver) in let new_delta = subst_dom_codom_delta_resolver subst mtb.typ_delta in let full_subst = (map_mp mtb.typ_mp mp new_delta) in subst_modtype full_subst (fun resolver subst -> subst_dom_codom_delta_resolver subst resolver) mtb let rec is_bounded_expr l = function | SEBident mp -> List.mem mp l | SEBapply (fexpr,mexpr,_) -> is_bounded_expr l mexpr || is_bounded_expr l fexpr | _ -> false let rec clean_struct l = function | (lab,SFBmodule mb) as field -> let clean_typ = clean_expr l mb.mod_type in let clean_impl = begin try if (is_bounded_expr l (Option.get mb.mod_expr)) then Some clean_typ else Some (clean_expr l (Option.get mb.mod_expr)) with Option.IsNone -> None end in if clean_typ==mb.mod_type && clean_impl==mb.mod_expr then field else (lab,SFBmodule {mb with mod_type=clean_typ; mod_expr=clean_impl}) | field -> field and clean_expr l = function | SEBfunctor (mbid,sigt,str) as s-> let str_clean = clean_expr l str in let sig_clean = clean_expr l sigt.typ_expr in if str_clean == str && sig_clean = sigt.typ_expr then s else SEBfunctor (mbid,{sigt with typ_expr=sig_clean},str_clean) | SEBstruct str as s-> let str_clean = Util.list_smartmap (clean_struct l) str in if str_clean == str then s else SEBstruct(str_clean) | str -> str let rec collect_mbid l = function | SEBfunctor (mbid,sigt,str) as s-> let str_clean = collect_mbid ((MPbound mbid)::l) str in if str_clean == str then s else SEBfunctor (mbid,sigt,str_clean) | SEBstruct str as s-> let str_clean = Util.list_smartmap (clean_struct l) str in if str_clean == str then s else SEBstruct(str_clean) | _ -> anomaly "Modops:the evaluation of the structure failed " let clean_bounded_mod_expr = function | SEBfunctor _ as str -> let str_clean = collect_mbid [] str in if str_clean == str then str else str_clean | str -> str