(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* idset | c::cl -> if Id.Set.mem c idset then raise (InductiveError (SameNamesConstructors c)) else check (Id.Set.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Id.Set.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names cstset cl in check (Id.Set.add id indset) cstset' inds in check Id.Set.empty Id.Set.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (************************************************************************) (************************************************************************) (* Typing the arities and constructor types *) let infos_and_sort env t = let rec aux env t max = let t = whd_all env t in match kind t with | Prod (name,c1,c2) -> let varj = infer_type env c1 in let env1 = Environ.push_rel (LocalAssum (name,varj.utj_val)) env in let max = Universe.sup max (Sorts.univ_of_sort varj.utj_type) in aux env1 c2 max | _ when is_constructor_head t -> max | _ -> (* don't fail if not positive, it is tested later *) max in aux env t Universe.type0m (* Computing the levels of polymorphic inductive types For each inductive type of a block that is of level u_i, we have the constraints that u_i >= v_i where v_i is the type level of the types of the constructors of this inductive type. Each v_i depends of some of the u_i and of an extra (maybe non variable) universe, say w_i that summarize all the other constraints. Typically, for three inductive types, we could have u1,u2,u3,w1 <= u1 u1 w2 <= u2 u2,u3,w3 <= u3 From this system of inequations, we shall deduce w1,w2,w3 <= u1 w1,w2 <= u2 w1,w2,w3 <= u3 *) (* This (re)computes informations relevant to extraction and the sort of an arity or type constructor; we do not to recompute universes constraints *) let infer_constructor_packet env_ar_par params lc = (* type-check the constructors *) let jlc = List.map (infer_type env_ar_par) lc in let jlc = Array.of_list jlc in (* generalize the constructor over the parameters *) let lc'' = Array.map (fun j -> Term.it_mkProd_or_LetIn j.utj_val params) jlc in (* compute the max of the sorts of the products of the constructors types *) let levels = List.map (infos_and_sort env_ar_par) lc in let min = if Array.length jlc > 1 then Universe.type0 else Universe.type0m in let level = List.fold_left (fun max l -> Universe.sup max l) min levels in (lc'', level) (* If indices matter *) let cumulate_arity_large_levels env sign = fst (List.fold_right (fun d (lev,env) -> match d with | LocalAssum (_,t) -> let tj = infer_type env t in let u = Sorts.univ_of_sort tj.utj_type in (Universe.sup u lev, push_rel d env) | LocalDef _ -> lev, push_rel d env) sign (Universe.type0m,env)) let is_impredicative env u = is_type0m_univ u || (is_type0_univ u && is_impredicative_set env) (* Returns the list [x_1, ..., x_n] of levels contributing to template polymorphism. The elements x_k is None if the k-th parameter (starting from the most recent and ignoring let-definitions) is not contributing or is Some u_k if its level is u_k and is contributing. *) let param_ccls paramsctxt = let fold acc = function | (LocalAssum (_, p)) -> (let c = Term.strip_prod_assum p in match kind c with | Sort (Type u) -> Univ.Universe.level u | _ -> None) :: acc | LocalDef _ -> acc in List.fold_left fold [] paramsctxt (* Check arities and constructors *) let check_subtyping_arity_constructor env (subst : constr -> constr) (arcn : types) numparams is_arity = let numchecked = ref 0 in let basic_check ev tp = if !numchecked < numparams then () else conv_leq ev tp (subst tp); numchecked := !numchecked + 1 in let check_typ typ typ_env = match typ with | LocalAssum (_, typ') -> begin try basic_check typ_env typ'; Environ.push_rel typ typ_env with NotConvertible -> anomaly ~label:"bad inductive subtyping relation" (Pp.str "Invalid subtyping relation") end | _ -> anomaly (Pp.str "") in let typs, codom = dest_prod env arcn in let last_env = Context.Rel.fold_outside check_typ typs ~init:env in if not is_arity then basic_check last_env codom else () (* Check that the subtyping information inferred for inductive types in the block is correct. *) (* This check produces a value of the unit type if successful or raises an anomaly if check fails. *) let check_subtyping cumi paramsctxt env_ar inds = let numparams = Context.Rel.nhyps paramsctxt in let uctx = CumulativityInfo.univ_context cumi in let new_levels = Array.init (UContext.size uctx) (Level.make DirPath.empty) in let lmap = Array.fold_left2 (fun lmap u u' -> LMap.add u u' lmap) LMap.empty (Instance.to_array @@ UContext.instance uctx) new_levels in let dosubst = subst_univs_level_constr lmap in let instance_other = Instance.of_array new_levels in let constraints_other = Univ.subst_univs_level_constraints lmap (Univ.UContext.constraints uctx) in let uctx_other = Univ.UContext.make (instance_other, constraints_other) in let env = Environ.push_context uctx_other env_ar in let subtyp_constraints = CumulativityInfo.leq_constraints cumi (UContext.instance uctx) instance_other Constraint.empty in let env = Environ.add_constraints subtyp_constraints env in (* process individual inductive types: *) Array.iter (fun (id,cn,lc,(sign,arity)) -> match arity with | RegularArity (_, full_arity, _) -> check_subtyping_arity_constructor env dosubst full_arity numparams true; Array.iter (fun cnt -> check_subtyping_arity_constructor env dosubst cnt numparams false) lc | TemplateArity _ -> anomaly ~label:"check_subtyping" Pp.(str "template polymorphism and cumulative polymorphism are not compatible") ) inds (* Type-check an inductive definition. Does not check positivity conditions. *) (* TODO check that we don't overgeneralize construcors/inductive arities with universes that are absent from them. Is it possible? *) let typecheck_inductive env mie = let () = match mie.mind_entry_inds with | [] -> anomaly (Pp.str "empty inductive types declaration.") | _ -> () in (* Check unicity of names *) mind_check_names mie; (* Params are typed-checked here *) let env' = match mie.mind_entry_universes with | Monomorphic_ind_entry ctx -> push_context_set ctx env | Polymorphic_ind_entry ctx -> push_context ctx env | Cumulative_ind_entry cumi -> push_context (Univ.CumulativityInfo.univ_context cumi) env in let (env_params,paramsctxt) = infer_local_decls env' mie.mind_entry_params in (* We first type arity of each inductive definition *) (* This allows building the environment of arities and to share *) (* the set of constraints *) let env_arities, rev_arity_list = List.fold_left (fun (env_ar,l) ind -> (* Arities (without params) are typed-checked here *) let expltype = ind.mind_entry_template in let arity = if isArity ind.mind_entry_arity then let (ctx,s) = dest_arity env_params ind.mind_entry_arity in match s with | Type u when Univ.universe_level u = None -> (** We have an algebraic universe as the conclusion of the arity, typecheck the dummy Π ctx, Prop and do a special case for the conclusion. *) let proparity = infer_type env_params (mkArity (ctx, Sorts.prop)) in let (cctx, _) = destArity proparity.utj_val in (* Any universe is well-formed, we don't need to check [s] here *) mkArity (cctx, s) | _ -> let arity = infer_type env_params ind.mind_entry_arity in arity.utj_val else let arity = infer_type env_params ind.mind_entry_arity in arity.utj_val in let (sign, deflev) = dest_arity env_params arity in let inflev = (* The level of the inductive includes levels of indices if in indices_matter mode *) if !indices_matter then Some (cumulate_arity_large_levels env_params sign) else None in (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let full_arity = it_mkProd_or_LetIn arity paramsctxt in let id = ind.mind_entry_typename in let env_ar' = push_rel (LocalAssum (Name id, full_arity)) env_ar in (* (add_constraints cst2 env_ar) in *) (env_ar', (id,full_arity,sign @ paramsctxt,expltype,deflev,inflev)::l)) (env',[]) mie.mind_entry_inds in let arity_list = List.rev rev_arity_list in (* builds the typing context "Gamma, I1:A1, ... In:An, params" *) let env_ar_par = push_rel_context paramsctxt env_arities in (* Now, we type the constructors (without params) *) let inds = List.fold_right2 (fun ind arity_data inds -> let (lc',cstrs_univ) = infer_constructor_packet env_ar_par paramsctxt ind.mind_entry_lc in let consnames = ind.mind_entry_consnames in let ind' = (arity_data,consnames,lc',cstrs_univ) in ind'::inds) mie.mind_entry_inds arity_list ([]) in let inds = Array.of_list inds in (* Compute/check the sorts of the inductive types *) let inds = Array.map (fun ((id,full_arity,sign,expltype,def_level,inf_level),cn,lc,clev) -> let infu = (** Inferred level, with parameters and constructors. *) match inf_level with | Some alev -> Universe.sup clev alev | None -> clev in let full_polymorphic () = let defu = Sorts.univ_of_sort def_level in let is_natural = type_in_type env || (UGraph.check_leq (universes env') infu defu) in let _ = (** Impredicative sort, always allow *) if is_impredicative env defu then () else (** Predicative case: the inferred level must be lower or equal to the declared level. *) if not is_natural then anomaly ~label:"check_inductive" (Pp.str"Incorrect universe " ++ Universe.pr defu ++ Pp.str " declared for inductive type, inferred level is " ++ Universe.pr infu ++ Pp.str ".") in RegularArity (not is_natural,full_arity,defu) in let template_polymorphic () = let sign, s = try dest_arity env full_arity with NotArity -> raise (InductiveError (NotAnArity (env, full_arity))) in match s with | Type u when expltype (* Explicitly polymorphic *) -> (* The polymorphic level is a function of the level of the *) (* conclusions of the parameters *) (* We enforce [u >= lev] in case [lev] has a strict upper *) (* constraints over [u] *) let b = type_in_type env || UGraph.check_leq (universes env') infu u in if not b then anomaly ~label:"check_inductive" (Pp.str"Incorrect universe " ++ Universe.pr u ++ Pp.str " declared for inductive type, inferred level is " ++ Universe.pr clev ++ Pp.str ".") else TemplateArity (param_ccls paramsctxt, infu) | _ (* Not an explicit occurrence of Type *) -> full_polymorphic () in let arity = match mie.mind_entry_universes with | Monomorphic_ind_entry _ -> template_polymorphic () | Polymorphic_ind_entry _ | Cumulative_ind_entry _ -> full_polymorphic () in (id,cn,lc,(sign,arity))) inds in (* Check that the subtyping information inferred for inductive types in the block is correct. *) (* This check produces a value of the unit type if successful or raises an anomaly if check fails. *) let () = match mie.mind_entry_universes with | Monomorphic_ind_entry _ -> () | Polymorphic_ind_entry _ -> () | Cumulative_ind_entry cumi -> check_subtyping cumi paramsctxt env_arities inds in (env_arities, env_ar_par, paramsctxt, inds) (************************************************************************) (************************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor of Constr.rel_context * int | LocalNonPar of int * int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err id ntyp env nparamsctxt c err = let (lparams,c') = mind_extract_params nparamsctxt c in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',mkRel (kt+nparamsctxt)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',mkRel (kt+nparamsctxt)))) | LocalNotConstructor (paramsctxt,nargs)-> let nparams = Context.Rel.nhyps paramsctxt in raise (InductiveError (NotConstructor (env,id,c',mkRel (ntyp+nparamsctxt), nparams,nargs))) | LocalNonPar (n,i,l) -> raise (InductiveError (NonPar (env,c',n,mkRel i,mkRel (l+nparamsctxt)))) let failwith_non_pos n ntypes c = for k = n to n + ntypes - 1 do if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1))) done let failwith_non_pos_vect n ntypes v = Array.iter (failwith_non_pos n ntypes) v; anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.") let failwith_non_pos_list n ntypes l = List.iter (failwith_non_pos n ntypes) l; anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.") (* Check the inductive type is called with the expected parameters *) (* [n] is the index of the last inductive type in [env] *) let check_correct_par (env,n,ntypes,_) paramdecls ind_index args = let nparams = Context.Rel.nhyps paramdecls in let args = Array.of_list args in if Array.length args < nparams then raise (IllFormedInd (LocalNotEnoughArgs ind_index)); let (params,realargs) = Array.chop nparams args in let nparamdecls = List.length paramdecls in let rec check param_index paramdecl_index = function | [] -> () | LocalDef _ :: paramdecls -> check param_index (paramdecl_index+1) paramdecls | _::paramdecls -> match kind (whd_all env params.(param_index)) with | Rel w when Int.equal w paramdecl_index -> check (param_index-1) (paramdecl_index+1) paramdecls | _ -> let paramdecl_index_in_env = paramdecl_index-n+nparamdecls+1 in let err = LocalNonPar (param_index+1, paramdecl_index_in_env, ind_index) in raise (IllFormedInd err) in check (nparams-1) (n-nparamdecls) paramdecls; if not (Array.for_all (noccur_between n ntypes) realargs) then failwith_non_pos_vect n ntypes realargs (* Computes the maximum number of recursive parameters: the first parameters which are constant in recursive arguments [n] is the current depth, [nmr] is the maximum number of possible recursive parameters *) let compute_rec_par (env,n,_,_) paramsctxt nmr largs = if Int.equal nmr 0 then 0 else (* start from 0, params will be in reverse order *) let (lpar,_) = List.chop nmr largs in let rec find k index = function ([],_) -> nmr | (_,[]) -> assert false (* |paramsctxt|>=nmr *) | (lp, LocalDef _ :: paramsctxt) -> find k (index-1) (lp,paramsctxt) | (p::lp,_::paramsctxt) -> ( match kind (whd_all env p) with | Rel w when Int.equal w index -> find (k+1) (index-1) (lp,paramsctxt) | _ -> k) in find 0 (n-1) (lpar,List.rev paramsctxt) (* [env] is the typing environment [n] is the dB of the last inductive type [ntypes] is the number of inductive types in the definition (i.e. range of inductives is [n; n+ntypes-1]) [lra] is the list of recursive tree of each variable *) let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lrecparams) = let auxntyp = 1 in let specif = (lookup_mind_specif env mi, u) in let ty = type_of_inductive env specif in let env' = let decl = LocalAssum (Anonymous, hnf_prod_applist env ty lrecparams) in push_rel decl env in let ra_env' = (Imbr mi,(Rtree.mk_rec_calls 1).(0)) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') let rec ienv_decompose_prod (env,_,_,_ as ienv) n c = if Int.equal n 0 then (ienv,c) else let c' = whd_all env c in match kind c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false let array_min nmr a = if Int.equal nmr 0 then 0 else Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a (** [check_positivity_one ienv paramsctxt (mind,i) nnonrecargs lcnames indlc] checks the positivity of the [i]-th member of the mutually inductive definition [mind]. It returns an [Rtree.t] which represents the position of the recursive calls of inductive in [i] for use by the guard condition (terms at these positions are considered sub-terms) as well as the number of of non-uniform arguments (used to generate induction schemes, so a priori less relevant to the kernel). If [chkpos] is [false] then positivity is assumed, and [check_positivity_one] computes the subterms occurrences in a best-effort fashion. *) let check_positivity_one ~chkpos recursive (env,_,ntypes,_ as ienv) paramsctxt (_,i as ind) nnonrecargs lcnames indlc = let nparamsctxt = Context.Rel.length paramsctxt in let nmr = Context.Rel.nhyps paramsctxt in (** Positivity of one argument [c] of a constructor (i.e. the constructor [cn] has a type of the shape [… -> c … -> P], where, more generally, the arrows may be dependent). *) let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in (** If one of the inductives of the mutually inductive block occurs in the left-hand side of a product, then such an occurrence is a non-strictly-positive recursive call. Occurrences in the right-hand side of the product must be strictly positive.*) (match weaker_noccur_between env n ntypes b with | None when chkpos -> failwith_non_pos_list n ntypes [b] | None -> check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d | Some b -> check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d) | Rel k -> (try let (ra,rarg) = List.nth ra_env (k-1) in let largs = List.map (whd_all env) largs in let nmr1 = (match ra with Mrec _ -> compute_rec_par ienv paramsctxt nmr largs | _ -> nmr) in (** The case where one of the inductives of the mutually inductive block occurs as an argument of another is not known to be safe. So Coq rejects it. *) if chkpos && not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs else (nmr1,rarg) with Failure _ | Invalid_argument _ -> (nmr,mk_norec)) | Ind ind_kn -> (** If one of the inductives of the mutually inductive block being defined appears in a parameter, then we have a nested inductive type. The positivity is then discharged to the [check_positive_nested] function. *) if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec) else check_positive_nested ienv nmr (ind_kn, largs) | err -> (** If an inductive of the mutually inductive block appears in any other way, then the positivy check gives up. *) if not chkpos || (noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs) then (nmr,mk_norec) else failwith_non_pos_list n ntypes (x::largs) (** [check_positive_nested] handles the case of nested inductive calls, that is, when an inductive types from the mutually inductive block is called as an argument of an inductive types (for the moment, this inductive type must be a previously defined types, not one of the types of the mutually inductive block being defined). *) (* accesses to the environment are not factorised, but is it worth? *) and check_positive_nested (env,n,ntypes,ra_env as ienv) nmr ((mi,u), largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnrecpar = mib.mind_nparams_rec in let auxnnonrecpar = mib.mind_nparams - auxnrecpar in let (auxrecparams,auxnonrecargs) = try List.chop auxnrecpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (** Inductives of the inductive block being defined are only allowed to appear nested in the parameters of another inductive type. Not in the proper indices. *) if chkpos && not (List.for_all (noccur_between n ntypes) auxnonrecargs) then failwith_non_pos_list n ntypes auxnonrecargs; (* Nested mutual inductive types are not supported *) let auxntyp = mib.mind_ntypes in if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc auxntyp auxnrecpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),auxrecparams) in (* Parameters expressed in env' *) let auxrecparams' = List.map (lift auxntyp) auxrecparams in let irecargs_nmr = (** Checks that the "nesting" inductive type is covariant in the relevant parameters. In other words, that the (nested) parameters which are instantiated with inductives of the mutually inductive block occur positively in the types of the nested constructors. *) Array.map (function c -> let c' = hnf_prod_applist env' c auxrecparams' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' auxnnonrecpar c' in check_constructors ienv' false nmr c') auxlcvect in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0)) (** [check_constructors ienv check_head nmr c] checks the positivity condition in the type [c] of a constructor (i.e. that recursive calls to the inductives of the mutually inductive definition appear strictly positively in each of the arguments of the constructor, see also [check_pos]). If [check_head] is [true], then the type of the fully applied constructor (the "head" of the type [c]) is checked to be the right (properly applied) inductive type. *) and check_constructors ienv check_head nmr c = let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in if not recursive && not (noccur_between n ntypes b) then raise (InductiveError BadEntry); let nmr',recarg = check_pos ienv nmr b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' nmr' (recarg::lrec) d | hd -> let () = if check_head then begin match hd with | Rel j when Int.equal j (n + ntypes - i - 1) -> check_correct_par ienv paramsctxt (ntypes - i) largs | _ -> raise (IllFormedInd (LocalNotConstructor(paramsctxt,nnonrecargs))) end else if chkpos && not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs in (nmr, List.rev lrec) in check_constr_rec ienv nmr [] c in let irecargs_nmr = Array.map2 (fun id c -> let _,rawc = mind_extract_params nparamsctxt c in try check_constructors ienv true nmr rawc with IllFormedInd err -> explain_ind_err id (ntypes-i) env nparamsctxt c err) (Array.of_list lcnames) indlc in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr', mk_paths (Mrec ind) irecargs) (** [check_positivity ~chkpos kn env_ar paramsctxt inds] checks that the mutually inductive block [inds] is strictly positive. If [chkpos] is [false] then positivity is assumed, and [check_positivity_one] computes the subterms occurrences in a best-effort fashion. *) let check_positivity ~chkpos kn env_ar_par paramsctxt finite inds = let ntypes = Array.length inds in let recursive = finite != BiFinite in let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in let ra_env_ar = Array.rev_to_list rc in let nparamsctxt = Context.Rel.length paramsctxt in let nmr = Context.Rel.nhyps paramsctxt in let check_one i (_,lcnames,lc,(sign,_)) = let ra_env_ar_par = List.init nparamsctxt (fun _ -> (Norec,mk_norec)) @ ra_env_ar in let ienv = (env_ar_par, 1+nparamsctxt, ntypes, ra_env_ar_par) in let nnonrecargs = Context.Rel.nhyps sign - nmr in check_positivity_one ~chkpos recursive ienv paramsctxt (kn,i) nnonrecargs lcnames lc in let irecargs_nmr = Array.mapi check_one inds in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',Rtree.mk_rec irecargs) (************************************************************************) (************************************************************************) (* Build the inductive packet *) (* Allowed eliminations *) let all_sorts = [InProp;InSet;InType] let small_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts is_smashed s = if not is_smashed then (** Naturally in the defined sort. If [s] is Prop, it must be small and unitary. Unsmashed, predicative Type and Set: all elimination allowed as well. *) all_sorts else match Sorts.family s with (* Type: all elimination allowed: above and below *) | InType -> all_sorts (* Smashed Set is necessarily impredicative: forbids large elimination *) | InSet -> small_sorts (* Smashed to Prop, no informative eliminations allowed *) | InProp -> logical_sorts (* Previous comment: *) (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type. *) (* -> this is now handled by is_smashed: *) (* - all_sorts in case of small, unitary Prop (not smashed) *) (* - logical_sorts in case of large, unitary Prop (smashed) *) let arity_conclusion = function | RegularArity (_, c, _) -> c | TemplateArity (_, s) -> mkType s let fold_inductive_blocks f = Array.fold_left (fun acc (_,_,lc,(arsign,ar)) -> f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (arity_conclusion ar) arsign)) let used_section_variables env inds = let ids = fold_inductive_blocks (fun l c -> Id.Set.union (Environ.global_vars_set env c) l) Id.Set.empty inds in keep_hyps env ids let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) let rel_list n m = Array.to_list (rel_vect n m) exception UndefinableExpansion (** From a rel context describing the constructor arguments, build an expansion function. The term built is expecting to be substituted first by a substitution of the form [params, x : ind params] *) let compute_projections (kn, i as ind) mib = let pkt = mib.mind_packets.(i) in let u = match mib.mind_universes with | Monomorphic_ind _ -> Univ.Instance.empty | Polymorphic_ind auctx -> Univ.make_abstract_instance auctx | Cumulative_ind acumi -> Univ.make_abstract_instance (Univ.ACumulativityInfo.univ_context acumi) in let subst = List.init mib.mind_ntypes (fun i -> mkIndU ((kn, mib.mind_ntypes - i - 1), u)) in let rctx, _ = decompose_prod_assum (substl subst pkt.mind_nf_lc.(0)) in let ctx, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in (** We build a substitution smashing the lets in the record parameters so that typechecking projections requires just a substitution and not matching with a parameter context. *) let paramsletsubst = (* [Ind inst] is typed in context [params-wo-let] *) let inst' = rel_list 0 mib.mind_nparams in (* {params-wo-let |- subst:params] *) let subst = subst_of_rel_context_instance paramslet inst' in (* {params-wo-let, x:Ind inst' |- subst':(params,x:Ind inst)] *) let subst = (* For the record parameter: *) mkRel 1 :: List.map (lift 1) subst in subst in let projections decl (i, j, labs, pbs, letsubst) = match decl with | LocalDef (na,c,t) -> (* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *) let c = liftn 1 j c in (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *) let c2 = substl letsubst c in (* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)] to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *) let letsubst = c2 :: letsubst in (i, j+1, labs, pbs, letsubst) | LocalAssum (na,t) -> match na with | Name id -> let lab = Label.of_id id in let kn = Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg:i lab in (* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *) let t = liftn 1 j t in (* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *) let projty = substl letsubst t in (* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)] to [params, x:I |- t(proj1 x,..,projj x)] *) let fterm = mkProj (Projection.make kn false, mkRel 1) in (i + 1, j + 1, lab :: labs, projty :: pbs, fterm :: letsubst) | Anonymous -> raise UndefinableExpansion in let (_, _, labs, pbs, letsubst) = List.fold_right projections ctx (0, 1, [], [], paramsletsubst) in Array.of_list (List.rev labs), Array.of_list (List.rev pbs) let abstract_inductive_universes iu = match iu with | Monomorphic_ind_entry ctx -> (Univ.empty_level_subst, Monomorphic_ind ctx) | Polymorphic_ind_entry ctx -> let (inst, auctx) = Univ.abstract_universes ctx in let inst = Univ.make_instance_subst inst in (inst, Polymorphic_ind auctx) | Cumulative_ind_entry cumi -> let (inst, acumi) = Univ.abstract_cumulativity_info cumi in let inst = Univ.make_instance_subst inst in (inst, Cumulative_ind acumi) let build_inductive env prv iu env_ar paramsctxt kn isrecord isfinite inds nmr recargs = let ntypes = Array.length inds in (* Compute the set of used section variables *) let hyps = used_section_variables env inds in let nparamargs = Context.Rel.nhyps paramsctxt in let nparamsctxt = Context.Rel.length paramsctxt in let substunivs, aiu = abstract_inductive_universes iu in let paramsctxt = Vars.subst_univs_level_context substunivs paramsctxt in let env_ar = let ctxunivs = Environ.rel_context env_ar in let ctxunivs' = Vars.subst_univs_level_context substunivs ctxunivs in Environ.push_rel_context ctxunivs' env in (* Check one inductive *) let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg = (* Type of constructors in normal form *) let lc = Array.map (Vars.subst_univs_level_constr substunivs) lc in let splayed_lc = Array.map (dest_prod_assum env_ar) lc in let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in let consnrealdecls = Array.map (fun (d,_) -> Context.Rel.length d - nparamsctxt) splayed_lc in let consnrealargs = Array.map (fun (d,_) -> Context.Rel.nhyps d - nparamargs) splayed_lc in (* Elimination sorts *) let arkind,kelim = match ar_kind with | TemplateArity (paramlevs, lev) -> let ar = {template_param_levels = paramlevs; template_level = lev} in TemplateArity ar, all_sorts | RegularArity (info,ar,defs) -> let s = Sorts.sort_of_univ defs in let kelim = allowed_sorts info s in let ar = RegularArity { mind_user_arity = Vars.subst_univs_level_constr substunivs ar; mind_sort = Sorts.sort_of_univ (Univ.subst_univs_level_universe substunivs defs); } in ar, kelim in (* Assigning VM tags to constructors *) let nconst, nblock = ref 0, ref 0 in let transf num = let arity = List.length (dest_subterms recarg).(num) in if Int.equal arity 0 then let p = (!nconst, 0) in incr nconst; p else let p = (!nblock + 1, arity) in incr nblock; p (* les tag des constructeur constant commence a 0, les tag des constructeur non constant a 1 (0 => accumulator) *) in let rtbl = Array.init (List.length cnames) transf in (* Build the inductive packet *) { mind_typename = id; mind_arity = arkind; mind_arity_ctxt = Vars.subst_univs_level_context substunivs ar_sign; mind_nrealargs = Context.Rel.nhyps ar_sign - nparamargs; mind_nrealdecls = Context.Rel.length ar_sign - nparamsctxt; mind_kelim = kelim; mind_consnames = Array.of_list cnames; mind_consnrealdecls = consnrealdecls; mind_consnrealargs = consnrealargs; mind_user_lc = lc; mind_nf_lc = nf_lc; mind_recargs = recarg; mind_nb_constant = !nconst; mind_nb_args = !nblock; mind_reloc_tbl = rtbl; } in let packets = Array.map2 build_one_packet inds recargs in let mib = (* Build the mutual inductive *) { mind_record = NotRecord; mind_ntypes = ntypes; mind_finite = isfinite; mind_hyps = hyps; mind_nparams = nparamargs; mind_nparams_rec = nmr; mind_params_ctxt = paramsctxt; mind_packets = packets; mind_universes = aiu; mind_private = prv; mind_typing_flags = Environ.typing_flags env; } in let record_info = match isrecord with | Some (Some rid) -> let is_record pkt = pkt.mind_kelim == all_sorts && Array.length pkt.mind_consnames == 1 && pkt.mind_consnrealargs.(0) > 0 in (** The elimination criterion ensures that all projections can be defined. *) if Array.for_all is_record packets then let map i id = let labs, projs = compute_projections (kn, i) mib in (id, labs, projs) in try PrimRecord (Array.mapi map rid) with UndefinableExpansion -> FakeRecord else FakeRecord | Some None -> FakeRecord | None -> NotRecord in { mib with mind_record = record_info } (************************************************************************) (************************************************************************) let check_inductive env kn mie = (* First type-check the inductive definition *) let (env_ar, env_ar_par, paramsctxt, inds) = typecheck_inductive env mie in (* Then check positivity conditions *) let chkpos = (Environ.typing_flags env).check_guarded in let (nmr,recargs) = check_positivity ~chkpos kn env_ar_par paramsctxt mie.mind_entry_finite inds in (* Build the inductive packets *) build_inductive env mie.mind_entry_private mie.mind_entry_universes env_ar paramsctxt kn mie.mind_entry_record mie.mind_entry_finite inds nmr recargs