(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 'a subs val subs_shft: int * 'a subs -> 'a subs val subs_lift: 'a subs -> 'a subs val subs_liftn: int -> 'a subs -> 'a subs (* [subs_shift_cons(k,s,[|t1..tn|])] builds (^k s).t1..tn *) val subs_shift_cons: int * 'a subs * 'a array -> 'a subs (* [expand_rel k subs] expands de Bruijn [k] in the explicit substitution * [subs]. The result is either (Inl(lams,v)) when the variable is * substituted by value [v] under lams binders (i.e. v *has* to be * shifted by lams), or (Inr (k',p)) when the variable k is just relocated * as k'; p is None if the variable points inside subs and Some(k) if the * variable points k bindings beyond subs (cf argument of ESID). *) val expand_rel: int -> 'a subs -> (int * 'a, int * int option) Util.union (* Tests whether a substitution behaves like the identity *) val is_subs_id: 'a subs -> bool (* Composition of substitutions: [comp mk_clos s1 s2] computes a * substitution equivalent to applying s2 then s1. Argument * mk_clos is used when a closure has to be created, i.e. when * s1 is applied on an element of s2. *) val comp : ('a subs * 'a -> 'a) -> 'a subs -> 'a subs -> 'a subs (*s Compact representation of explicit relocations. \\ [ELSHFT(l,n)] == lift of [n], then apply [lift l]. [ELLFT(n,l)] == apply [l] to de Bruijn > [n] i.e under n binders. *) type lift = | ELID | ELSHFT of lift * int | ELLFT of int * lift val el_shft : int -> lift -> lift val el_liftn : int -> lift -> lift val el_lift : lift -> lift val reloc_rel : int -> lift -> int val is_lift_id : lift -> bool