(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n *) (* i.e under n binders *) (* compose a relocation of magnitude n *) let rec el_shft_rec n = function | ELSHFT(el,k) -> el_shft_rec (k+n) el | el -> ELSHFT(el,n) let el_shft n el = if n = 0 then el else el_shft_rec n el (* cross n binders *) let rec el_liftn_rec n = function | ELID -> ELID | ELLFT(k,el) -> el_liftn_rec (n+k) el | el -> ELLFT(n, el) let el_liftn n el = if n = 0 then el else el_liftn_rec n el let el_lift el = el_liftn_rec 1 el (* relocation of de Bruijn n in an explicit lift *) let rec reloc_rel n = function | ELID -> n | ELLFT(k,el) -> if n <= k then n else (reloc_rel (n-k) el) + k | ELSHFT(el,k) -> (reloc_rel (n+k) el) let rec is_lift_id = function | ELID -> true | ELSHFT(e,n) -> n=0 & is_lift_id e | ELLFT (_,e) -> is_lift_id e (*********************) (* Substitutions *) (*********************) (* (bounded) explicit substitutions of type 'a *) type 'a subs = | ESID of int (* ESID(n) = %n END bounded identity *) | CONS of 'a * 'a subs (* CONS(t,S) = (S.t) parallel substitution *) | SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *) (* with n vars *) | LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *) (* operations of subs: collapses constructors when possible. * Needn't be recursive if we always use these functions *) let subs_cons(x,s) = CONS(x,s) let subs_liftn n = function | ESID p -> ESID (p+n) (* bounded identity lifted extends by p *) | LIFT (p,lenv) -> LIFT (p+n, lenv) | lenv -> LIFT (n,lenv) let subs_lift a = subs_liftn 1 a let subs_liftn n a = if n = 0 then a else subs_liftn n a let subs_shft = function | (0, s) -> s | (n, SHIFT (k,s1)) -> SHIFT (k+n, s1) | (n, s) -> SHIFT (n,s) let subs_shft (n,a) = if n = 0 then a else subs_shft(n,a) let subs_shift_cons = function (0, s, t) -> CONS(t,s) | (k, SHIFT(n,s1), t) -> CONS(t,SHIFT(k+n, s1)) | (k, s, t) -> CONS(t,SHIFT(k, s));; (* Tests whether a substitution is extensionnaly equal to the identity *) let rec is_subs_id = function ESID _ -> true | LIFT(_,s) -> is_subs_id s | SHIFT(0,s) -> is_subs_id s | _ -> false (* Expands de Bruijn k in the explicit substitution subs * lams accumulates de shifts to perform when retrieving the i-th value * the rules used are the following: * * [id]k --> k * [S.t]1 --> t * [S.t]k --> [S](k-1) if k > 1 * [^n o S] k --> [^n]([S]k) * [(%n S)] k --> k if k <= n * [(%n S)] k --> [^n]([S](k-n)) * * the result is (Inr (k+lams,p)) when the variable is just relocated * where p is None if the variable points inside subs and Some(k) if the * variable points k bindings beyond subs. *) let rec exp_rel lams k subs = match (k,subs) with | (1, CONS (def,_)) -> Inl(lams,def) | (_, CONS (_,l)) -> exp_rel lams (pred k) l | (_, LIFT (n,_)) when k<=n -> Inr(lams+k,None) | (_, LIFT (n,l)) -> exp_rel (n+lams) (k-n) l | (_, SHIFT (n,s)) -> exp_rel (n+lams) k s | (_, ESID n) when k<=n -> Inr(lams+k,None) | (_, ESID n) -> Inr(lams+k,Some (k-n)) let expand_rel k subs = exp_rel 0 k subs let rec comp mk_cl s1 s2 = match (s1, s2) with | _, ESID _ -> s1 | ESID _, _ -> s2 | SHIFT(k,s), _ -> subs_shft(k, comp mk_cl s s2) | _, CONS(x,s') -> CONS(mk_cl(s1,x), comp mk_cl s1 s') | CONS(x,s), SHIFT(k,s') -> comp mk_cl s (subs_shft(k-1, s')) | CONS(x,s), LIFT(k,s') -> CONS(x,comp mk_cl s (subs_liftn (k-1) s')) | LIFT(k,s), SHIFT(k',s') -> if k if k