(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* let x' = f sub x in if x' == x then ar else RegularArity x' | TemplateArity x -> let x' = g sub x in if x' == x then ar else TemplateArity x' let map_decl_arity f g = function | RegularArity a -> RegularArity (f a) | TemplateArity a -> TemplateArity (g a) let hcons_template_arity ar = { template_param_levels = ar.template_param_levels; (* List.smartmap (Option.smartmap Univ.hcons_univ_level) ar.template_param_levels; *) template_level = Univ.hcons_univ ar.template_level } (** {6 Constants } *) let instantiate cb c = if cb.const_polymorphic then Vars.subst_instance_constr (Univ.UContext.instance cb.const_universes) c else c let body_of_constant otab cb = match cb.const_body with | Undef _ -> None | Def c -> Some (instantiate cb (force_constr c)) | OpaqueDef o -> Some (instantiate cb (Opaqueproof.force_proof otab o)) let type_of_constant cb = match cb.const_type with | RegularArity t as x -> let t' = instantiate cb t in if t' == t then x else RegularArity t' | TemplateArity _ as x -> x let constraints_of_constant otab cb = Univ.Constraint.union (Univ.UContext.constraints cb.const_universes) (match cb.const_body with | Undef _ -> Univ.empty_constraint | Def c -> Univ.empty_constraint | OpaqueDef o -> Univ.ContextSet.constraints (Opaqueproof.force_constraints otab o)) let universes_of_constant otab cb = match cb.const_body with | Undef _ | Def _ -> cb.const_universes | OpaqueDef o -> let body_uctxs = Opaqueproof.force_constraints otab o in assert(not cb.const_polymorphic || Univ.ContextSet.is_empty body_uctxs); let uctxs = Univ.ContextSet.of_context cb.const_universes in Univ.ContextSet.to_context (Univ.ContextSet.union body_uctxs uctxs) let universes_of_polymorphic_constant otab cb = if cb.const_polymorphic then let univs = universes_of_constant otab cb in Univ.instantiate_univ_context univs else Univ.UContext.empty let constant_has_body cb = match cb.const_body with | Undef _ -> false | Def _ | OpaqueDef _ -> true let is_opaque cb = match cb.const_body with | OpaqueDef _ -> true | Undef _ | Def _ -> false (** {7 Constant substitutions } *) let subst_rel_declaration sub = map_constr (subst_mps sub) let subst_rel_context sub = List.smartmap (subst_rel_declaration sub) let subst_template_cst_arity sub (ctx,s as arity) = let ctx' = subst_rel_context sub ctx in if ctx==ctx' then arity else (ctx',s) let subst_const_type sub arity = if is_empty_subst sub then arity else subst_mps sub arity (** No need here to check for physical equality after substitution, at least for Def due to the delayed substitution [subst_constr_subst]. *) let subst_const_def sub def = match def with | Undef _ -> def | Def c -> Def (subst_constr sub c) | OpaqueDef o -> OpaqueDef (Opaqueproof.subst_opaque sub o) let subst_const_proj sub pb = { pb with proj_ind = subst_mind sub pb.proj_ind; proj_type = subst_mps sub pb.proj_type; proj_body = subst_const_type sub pb.proj_body } let subst_const_body sub cb = assert (List.is_empty cb.const_hyps); (* we're outside sections *) if is_empty_subst sub then cb else let body' = subst_const_def sub cb.const_body in let type' = subst_decl_arity subst_const_type subst_template_cst_arity sub cb.const_type in let proj' = Option.smartmap (subst_const_proj sub) cb.const_proj in if body' == cb.const_body && type' == cb.const_type && proj' == cb.const_proj then cb else { const_hyps = []; const_body = body'; const_type = type'; const_proj = proj'; const_body_code = Option.map (Cemitcodes.subst_to_patch_subst sub) cb.const_body_code; const_polymorphic = cb.const_polymorphic; const_universes = cb.const_universes; const_inline_code = cb.const_inline_code; const_typing_flags = cb.const_typing_flags } (** {7 Hash-consing of constants } *) (** This hash-consing is currently quite partial : we only share internal fields (e.g. constr), and not the records themselves. But would it really bring substantial gains ? *) let hcons_rel_decl = map_type Term.hcons_types % map_value Term.hcons_constr % map_name Names.Name.hcons let hcons_rel_context l = List.smartmap hcons_rel_decl l let hcons_regular_const_arity t = Term.hcons_constr t let hcons_template_const_arity (ctx, ar) = (hcons_rel_context ctx, hcons_template_arity ar) let hcons_const_type = map_decl_arity hcons_regular_const_arity hcons_template_const_arity let hcons_const_def = function | Undef inl -> Undef inl | Def l_constr -> let constr = force_constr l_constr in Def (from_val (Term.hcons_constr constr)) | OpaqueDef _ as x -> x (* hashconsed when turned indirect *) let hcons_const_body cb = { cb with const_body = hcons_const_def cb.const_body; const_type = hcons_const_type cb.const_type; const_universes = Univ.hcons_universe_context cb.const_universes } (** {6 Inductive types } *) let eq_recarg r1 r2 = match r1, r2 with | Norec, Norec -> true | Mrec i1, Mrec i2 -> Names.eq_ind i1 i2 | Imbr i1, Imbr i2 -> Names.eq_ind i1 i2 | _ -> false let subst_recarg sub r = match r with | Norec -> r | Mrec (kn,i) -> let kn' = subst_mind sub kn in if kn==kn' then r else Mrec (kn',i) | Imbr (kn,i) -> let kn' = subst_mind sub kn in if kn==kn' then r else Imbr (kn',i) let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) (* dest_subterms returns the sizes of each argument of each constructor of an inductive object of size [p]. This should never be done for Norec, because the number of sons does not correspond to the number of constructors. *) let dest_subterms p = let (ra,cstrs) = Rtree.dest_node p in assert (match ra with Norec -> false | _ -> true); Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let recarg_length p j = let (_,cstrs) = Rtree.dest_node p in Array.length (snd (Rtree.dest_node cstrs.(j-1))) let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p (** {7 Substitution of inductive declarations } *) let subst_regular_ind_arity sub s = let uar' = subst_mps sub s.mind_user_arity in if uar' == s.mind_user_arity then s else { mind_user_arity = uar'; mind_sort = s.mind_sort } let subst_template_ind_arity sub s = s (* FIXME records *) let subst_ind_arity = subst_decl_arity subst_regular_ind_arity subst_template_ind_arity let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_consnrealargs = mbp.mind_consnrealargs; mind_typename = mbp.mind_typename; mind_nf_lc = Array.smartmap (subst_mps sub) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt; mind_arity = subst_ind_arity sub mbp.mind_arity; mind_user_lc = Array.smartmap (subst_mps sub) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_nrealdecls = mbp.mind_nrealdecls; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind_record sub (id, ps, pb as r) = let ps' = Array.smartmap (subst_constant sub) ps in let pb' = Array.smartmap (subst_const_proj sub) pb in if ps' == ps && pb' == pb then r else (id, ps', pb') let subst_mind_body sub mib = { mind_record = Option.smartmap (Option.smartmap (subst_mind_record sub)) mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = (match mib.mind_hyps with [] -> [] | _ -> assert false); mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = Context.Rel.map (subst_mps sub) mib.mind_params_ctxt; mind_packets = Array.smartmap (subst_mind_packet sub) mib.mind_packets ; mind_polymorphic = mib.mind_polymorphic; mind_universes = mib.mind_universes; mind_private = mib.mind_private; mind_typing_flags = mib.mind_typing_flags; } let inductive_instance mib = if mib.mind_polymorphic then Univ.UContext.instance mib.mind_universes else Univ.Instance.empty let inductive_context mib = if mib.mind_polymorphic then Univ.instantiate_univ_context mib.mind_universes else Univ.UContext.empty (** {6 Hash-consing of inductive declarations } *) let hcons_regular_ind_arity a = { mind_user_arity = Term.hcons_constr a.mind_user_arity; mind_sort = Term.hcons_sorts a.mind_sort } (** Just as for constants, this hash-consing is quite partial *) let hcons_ind_arity = map_decl_arity hcons_regular_ind_arity hcons_template_arity (** Substitution of inductive declarations *) let hcons_mind_packet oib = let user = Array.smartmap Term.hcons_types oib.mind_user_lc in let nf = Array.smartmap Term.hcons_types oib.mind_nf_lc in (* Special optim : merge [mind_user_lc] and [mind_nf_lc] if possible *) let nf = if Array.equal (==) user nf then user else nf in { oib with mind_typename = Names.Id.hcons oib.mind_typename; mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt; mind_arity = hcons_ind_arity oib.mind_arity; mind_consnames = Array.smartmap Names.Id.hcons oib.mind_consnames; mind_user_lc = user; mind_nf_lc = nf } let hcons_mind mib = { mib with mind_packets = Array.smartmap hcons_mind_packet mib.mind_packets; mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt; mind_universes = Univ.hcons_universe_context mib.mind_universes } (** {6 Stm machinery } *) let string_of_side_effect { Entries.eff } = match eff with | Entries.SEsubproof (c,_,_) -> "P(" ^ Names.string_of_con c ^ ")" | Entries.SEscheme (cl,_) -> "S(" ^ String.concat ", " (List.map (fun (_,c,_,_) -> Names.string_of_con c) cl) ^ ")" (** Hashconsing of modules *) let hcons_functorize hty he hself f = match f with | NoFunctor e -> let e' = he e in if e == e' then f else NoFunctor e' | MoreFunctor (mid, ty, nf) -> (** FIXME *) let mid' = mid in let ty' = hty ty in let nf' = hself nf in if mid == mid' && ty == ty' && nf == nf' then f else MoreFunctor (mid, ty', nf') let hcons_module_alg_expr me = me let rec hcons_structure_field_body sb = match sb with | SFBconst cb -> let cb' = hcons_const_body cb in if cb == cb' then sb else SFBconst cb' | SFBmind mib -> let mib' = hcons_mind mib in if mib == mib' then sb else SFBmind mib' | SFBmodule mb -> let mb' = hcons_module_body mb in if mb == mb' then sb else SFBmodule mb' | SFBmodtype mb -> let mb' = hcons_module_body mb in if mb == mb' then sb else SFBmodtype mb' and hcons_structure_body sb = (** FIXME *) let map (l, sfb as fb) = let l' = Names.Label.hcons l in let sfb' = hcons_structure_field_body sfb in if l == l' && sfb == sfb' then fb else (l', sfb') in List.smartmap map sb and hcons_module_signature ms = hcons_functorize hcons_module_body hcons_structure_body hcons_module_signature ms and hcons_module_expression me = hcons_functorize hcons_module_body hcons_module_alg_expr hcons_module_expression me and hcons_module_implementation mip = match mip with | Abstract -> Abstract | Algebraic me -> let me' = hcons_module_expression me in if me == me' then mip else Algebraic me' | Struct ms -> let ms' = hcons_module_signature ms in if ms == ms' then mip else Struct ms | FullStruct -> FullStruct and hcons_module_body mb = let mp' = mb.mod_mp in let expr' = hcons_module_implementation mb.mod_expr in let type' = hcons_module_signature mb.mod_type in let type_alg' = mb.mod_type_alg in let constraints' = Univ.hcons_universe_context_set mb.mod_constraints in let delta' = mb.mod_delta in let retroknowledge' = mb.mod_retroknowledge in if mb.mod_mp == mp' && mb.mod_expr == expr' && mb.mod_type == type' && mb.mod_type_alg == type_alg' && mb.mod_constraints == constraints' && mb.mod_delta == delta' && mb.mod_retroknowledge == retroknowledge' then mb else { mod_mp = mp'; mod_expr = expr'; mod_type = type'; mod_type_alg = type_alg'; mod_constraints = constraints'; mod_delta = delta'; mod_retroknowledge = retroknowledge'; }