/***********************************************************************/ /* */ /* Coq Compiler */ /* */ /* Benjamin Gregoire, projets Logical and Cristal */ /* INRIA Rocquencourt */ /* */ /* */ /***********************************************************************/ /* The bytecode interpreter */ /* Spiwack: expanded the virtual machine with operators used for fast computation of bounded (31bits) integers */ #include #include #include #include #include "coq_gc.h" #include "coq_instruct.h" #include "coq_fix_code.h" #include "coq_memory.h" #include "coq_values.h" /* spiwack: I append here a few macros for value/number manipulation */ #define uint32_of_value(val) (((uint32_t)(val)) >> 1) #define value_of_uint32(i) ((value)((((uint32_t)(i)) << 1) | 1)) #define UI64_of_uint32(lo) ((uint64_t)((uint32_t)(lo))) #define UI64_of_value(val) (UI64_of_uint32(uint32_of_value(val))) /* /spiwack */ /* Registers for the abstract machine: pc the code pointer sp the stack pointer (grows downward) accu the accumulator env heap-allocated environment trapsp pointer to the current trap frame extra_args number of extra arguments provided by the caller sp is a local copy of the global variable extern_sp. */ /* Instruction decoding */ #ifdef THREADED_CODE # define Instruct(name) coq_lbl_##name: # if defined(ARCH_SIXTYFOUR) && !defined(ARCH_CODE32) # define coq_Jumptbl_base ((char *) &&coq_lbl_ACC0) # else # define coq_Jumptbl_base ((char *) 0) # define coq_jumptbl_base ((char *) 0) # endif # ifdef DEBUG # define Next goto next_instr # else # define Next goto *(void *)(coq_jumptbl_base + *pc++) # endif #else # define Instruct(name) case name: # define Next break #endif /* #define _COQ_DEBUG_ */ #ifdef _COQ_DEBUG_ # define print_instr(s) /*if (drawinstr)*/ printf("%s\n",s) # define print_int(i) /*if (drawinstr)*/ printf("%d\n",i) # define print_lint(i) /*if (drawinstr)*/ printf("%ld\n",i) # else # define print_instr(s) # define print_int(i) # define print_lint(i) #endif #define CHECK_STACK(num_args) { \ if (sp - num_args < coq_stack_threshold) { \ coq_sp = sp; \ realloc_coq_stack(num_args + Coq_stack_threshold / sizeof(value)); \ sp = coq_sp; \ } \ } /* GC interface */ #define Setup_for_gc { sp -= 2; sp[0] = accu; sp[1] = coq_env; coq_sp = sp; } #define Restore_after_gc { accu = sp[0]; coq_env = sp[1]; sp += 2; } /* Register optimization. Some compilers underestimate the use of the local variables representing the abstract machine registers, and don't put them in hardware registers, which slows down the interpreter considerably. For GCC, Xavier Leroy have hand-assigned hardware registers for several architectures. */ #if defined(__GNUC__) && !defined(DEBUG) #ifdef __mips__ #define PC_REG asm("$16") #define SP_REG asm("$17") #define ACCU_REG asm("$18") #endif #ifdef __sparc__ #define PC_REG asm("%l0") #define SP_REG asm("%l1") #define ACCU_REG asm("%l2") #endif #ifdef __alpha__ #ifdef __CRAY__ #define PC_REG asm("r9") #define SP_REG asm("r10") #define ACCU_REG asm("r11") #define JUMPTBL_BASE_REG asm("r12") #else #define PC_REG asm("$9") #define SP_REG asm("$10") #define ACCU_REG asm("$11") #define JUMPTBL_BASE_REG asm("$12") #endif #endif #ifdef __i386__ #define PC_REG asm("%esi") #define SP_REG asm("%edi") #define ACCU_REG #endif #if defined(PPC) || defined(_POWER) || defined(_IBMR2) #define PC_REG asm("26") #define SP_REG asm("27") #define ACCU_REG asm("28") #endif #ifdef __hppa__ #define PC_REG asm("%r18") #define SP_REG asm("%r17") #define ACCU_REG asm("%r16") #endif #ifdef __mc68000__ #define PC_REG asm("a5") #define SP_REG asm("a4") #define ACCU_REG asm("d7") #endif #if defined(__arm__) && !defined(__thumb2__) #define PC_REG asm("r9") #define SP_REG asm("r8") #define ACCU_REG asm("r7") #endif #ifdef __ia64__ #define PC_REG asm("36") #define SP_REG asm("37") #define ACCU_REG asm("38") #define JUMPTBL_BASE_REG asm("39") #endif #endif /* For signal handling, we hijack some code from the caml runtime */ extern intnat caml_signals_are_pending; extern intnat caml_pending_signals[]; extern void caml_process_pending_signals(void); /* The interpreter itself */ value coq_interprete (code_t coq_pc, value coq_accu, value coq_atom_tbl, value coq_global_data, value coq_env, long coq_extra_args) { /* coq_accu is not allocated on the OCaml heap */ CAMLparam2(coq_atom_tbl, coq_global_data); /*Declaration des variables */ #ifdef PC_REG register code_t pc PC_REG; register value * sp SP_REG; register value accu ACCU_REG; #else register code_t pc; register value * sp; register value accu; #endif #if defined(THREADED_CODE) && defined(ARCH_SIXTYFOUR) && !defined(ARCH_CODE32) #ifdef JUMPTBL_BASE_REG register char * coq_jumptbl_base JUMPTBL_BASE_REG; #else register char * coq_jumptbl_base; #endif #endif #ifdef THREADED_CODE static void * coq_jumptable[] = { # include "coq_jumptbl.h" }; #else opcode_t curr_instr; #endif print_instr("Enter Interpreter"); if (coq_pc == NULL) { /* Interpreter is initializing */ print_instr("Interpreter is initializing"); #ifdef THREADED_CODE coq_instr_table = (char **) coq_jumptable; coq_instr_base = coq_Jumptbl_base; #endif CAMLreturn(Val_unit); } #if defined(THREADED_CODE) && defined(ARCH_SIXTYFOUR) && !defined(ARCH_CODE32) coq_jumptbl_base = coq_Jumptbl_base; #endif /* Initialisation */ sp = coq_sp; pc = coq_pc; accu = coq_accu; CHECK_STACK(0); #ifdef THREADED_CODE goto *(void *)(coq_jumptbl_base + *pc++); /* Jump to the first instruction */ #else while(1) { curr_instr = *pc++; switch(curr_instr) { #endif /* Basic stack operations */ Instruct(ACC0){ print_instr("ACC0"); accu = sp[0]; Next; } Instruct(ACC1){ print_instr("ACC1"); accu = sp[1]; Next; } Instruct(ACC2){ print_instr("ACC2"); accu = sp[2]; Next; } Instruct(ACC3){ print_instr("ACC3"); accu = sp[3]; Next; } Instruct(ACC4){ print_instr("ACC4"); accu = sp[4]; Next; } Instruct(ACC5){ print_instr("ACC5"); accu = sp[5]; Next; } Instruct(ACC6){ print_instr("ACC6"); accu = sp[6]; Next; } Instruct(ACC7){ print_instr("ACC7"); accu = sp[7]; Next; } Instruct(PUSH){ print_instr("PUSH"); *--sp = accu; Next; } Instruct(PUSHACC0) { print_instr("PUSHACC0"); *--sp = accu; Next; } Instruct(PUSHACC1){ print_instr("PUSHACC1"); *--sp = accu; accu = sp[1]; Next; } Instruct(PUSHACC2){ print_instr("PUSHACC2"); *--sp = accu; accu = sp[2]; Next; } Instruct(PUSHACC3){ print_instr("PUSHACC3"); *--sp = accu; accu = sp[3]; Next; } Instruct(PUSHACC4){ print_instr("PUSHACC4"); *--sp = accu; accu = sp[4]; Next; } Instruct(PUSHACC5){ print_instr("PUSHACC5"); *--sp = accu; accu = sp[5]; Next; } Instruct(PUSHACC6){ print_instr("PUSHACC5"); *--sp = accu; accu = sp[6]; Next; } Instruct(PUSHACC7){ print_instr("PUSHACC7"); *--sp = accu; accu = sp[7]; Next; } Instruct(PUSHACC){ print_instr("PUSHACC"); *--sp = accu; } /* Fallthrough */ Instruct(ACC){ print_instr("ACC"); accu = sp[*pc++]; Next; } Instruct(POP){ print_instr("POP"); sp += *pc++; Next; } /* Access in heap-allocated environment */ Instruct(ENVACC1){ print_instr("ENVACC1"); accu = Field(coq_env, 1); Next; } Instruct(ENVACC2){ print_instr("ENVACC2"); accu = Field(coq_env, 2); Next; } Instruct(ENVACC3){ print_instr("ENVACC3"); accu = Field(coq_env, 3); Next; } Instruct(ENVACC4){ print_instr("ENVACC4"); accu = Field(coq_env, 4); Next; } Instruct(PUSHENVACC1){ print_instr("PUSHENVACC1"); *--sp = accu; accu = Field(coq_env, 1); Next; } Instruct(PUSHENVACC2){ print_instr("PUSHENVACC2"); *--sp = accu; accu = Field(coq_env, 2); Next; } Instruct(PUSHENVACC3){ print_instr("PUSHENVACC3"); *--sp = accu; accu = Field(coq_env, 3); Next; } Instruct(PUSHENVACC4){ print_instr("PUSHENVACC4"); *--sp = accu; accu = Field(coq_env, 4); Next; } Instruct(PUSHENVACC){ print_instr("PUSHENVACC"); *--sp = accu; } /* Fallthrough */ Instruct(ENVACC){ print_instr("ENVACC"); print_int(*pc); accu = Field(coq_env, *pc++); Next; } /* Function application */ Instruct(PUSH_RETADDR) { print_instr("PUSH_RETADDR"); sp -= 3; sp[0] = (value) (pc + *pc); sp[1] = coq_env; sp[2] = Val_long(coq_extra_args); coq_extra_args = 0; pc++; Next; } Instruct(APPLY) { print_instr("APPLY"); coq_extra_args = *pc - 1; pc = Code_val(accu); coq_env = accu; goto check_stack; } Instruct(APPLY1) { value arg1 = sp[0]; print_instr("APPLY1"); sp -= 3; sp[0] = arg1; sp[1] = (value)pc; sp[2] = coq_env; sp[3] = Val_long(coq_extra_args); print_instr("call stack="); print_lint(sp[1]); print_lint(sp[2]); print_lint(sp[3]); pc = Code_val(accu); coq_env = accu; coq_extra_args = 0; goto check_stack; } Instruct(APPLY2) { value arg1 = sp[0]; value arg2 = sp[1]; print_instr("APPLY2"); sp -= 3; sp[0] = arg1; sp[1] = arg2; sp[2] = (value)pc; sp[3] = coq_env; sp[4] = Val_long(coq_extra_args); pc = Code_val(accu); coq_env = accu; coq_extra_args = 1; goto check_stack; } Instruct(APPLY3) { value arg1 = sp[0]; value arg2 = sp[1]; value arg3 = sp[2]; print_instr("APPLY3"); sp -= 3; sp[0] = arg1; sp[1] = arg2; sp[2] = arg3; sp[3] = (value)pc; sp[4] = coq_env; sp[5] = Val_long(coq_extra_args); pc = Code_val(accu); coq_env = accu; coq_extra_args = 2; goto check_stack; } /* Stack checks */ check_stack: print_instr("check_stack"); CHECK_STACK(0); /* We also check for signals */ if (caml_signals_are_pending) { /* If there's a Ctrl-C, we reset the vm */ if (caml_pending_signals[SIGINT]) { coq_sp = coq_stack_high; } caml_process_pending_signals(); } Next; Instruct(ENSURESTACKCAPACITY) { print_instr("ENSURESTACKCAPACITY"); int size = *pc++; /* CHECK_STACK may trigger here a useless allocation because of the threshold, but check_stack: often does it anyway, so we prefer to factorize the code. */ CHECK_STACK(size); Next; } Instruct(APPTERM) { int nargs = *pc++; int slotsize = *pc; value * newsp; int i; print_instr("APPTERM"); /* Slide the nargs bottom words of the current frame to the top of the frame, and discard the remainder of the frame */ newsp = sp + slotsize - nargs; for (i = nargs - 1; i >= 0; i--) newsp[i] = sp[i]; sp = newsp; pc = Code_val(accu); coq_env = accu; coq_extra_args += nargs - 1; goto check_stack; } Instruct(APPTERM1) { value arg1 = sp[0]; print_instr("APPTERM1"); sp = sp + *pc - 1; sp[0] = arg1; pc = Code_val(accu); coq_env = accu; goto check_stack; } Instruct(APPTERM2) { value arg1 = sp[0]; value arg2 = sp[1]; print_instr("APPTERM2"); sp = sp + *pc - 2; sp[0] = arg1; sp[1] = arg2; pc = Code_val(accu); print_lint(accu); coq_env = accu; coq_extra_args += 1; goto check_stack; } Instruct(APPTERM3) { value arg1 = sp[0]; value arg2 = sp[1]; value arg3 = sp[2]; print_instr("APPTERM3"); sp = sp + *pc - 3; sp[0] = arg1; sp[1] = arg2; sp[2] = arg3; pc = Code_val(accu); coq_env = accu; coq_extra_args += 2; goto check_stack; } Instruct(RETURN) { print_instr("RETURN"); print_int(*pc); sp += *pc++; print_instr("stack="); print_lint(sp[0]); print_lint(sp[1]); print_lint(sp[2]); if (coq_extra_args > 0) { print_instr("extra args > 0"); print_lint(coq_extra_args); coq_extra_args--; pc = Code_val(accu); coq_env = accu; } else { print_instr("extra args = 0"); pc = (code_t)(sp[0]); coq_env = sp[1]; coq_extra_args = Long_val(sp[2]); sp += 3; } Next; } Instruct(RESTART) { int num_args = Wosize_val(coq_env) - 2; int i; print_instr("RESTART"); CHECK_STACK(num_args); sp -= num_args; for (i = 0; i < num_args; i++) sp[i] = Field(coq_env, i + 2); coq_env = Field(coq_env, 1); coq_extra_args += num_args; Next; } Instruct(GRAB) { int required = *pc++; print_instr("GRAB"); /* printf("GRAB %d\n",required); */ if (coq_extra_args >= required) { coq_extra_args -= required; } else { mlsize_t num_args, i; num_args = 1 + coq_extra_args; /* arg1 + extra args */ Alloc_small(accu, num_args + 2, Closure_tag); Field(accu, 1) = coq_env; for (i = 0; i < num_args; i++) Field(accu, i + 2) = sp[i]; Code_val(accu) = pc - 3; /* Point to the preceding RESTART instr. */ sp += num_args; pc = (code_t)(sp[0]); coq_env = sp[1]; coq_extra_args = Long_val(sp[2]); sp += 3; } Next; } Instruct(GRABREC) { int rec_pos = *pc++; /* commence a zero */ print_instr("GRABREC"); if (rec_pos <= coq_extra_args && !Is_accu(sp[rec_pos])) { pc++;/* On saute le Restart */ } else { if (coq_extra_args < rec_pos) { /* Partial application */ mlsize_t num_args, i; num_args = 1 + coq_extra_args; /* arg1 + extra args */ Alloc_small(accu, num_args + 2, Closure_tag); Field(accu, 1) = coq_env; for (i = 0; i < num_args; i++) Field(accu, i + 2) = sp[i]; Code_val(accu) = pc - 3; sp += num_args; pc = (code_t)(sp[0]); coq_env = sp[1]; coq_extra_args = Long_val(sp[2]); sp += 3; } else { /* The recursif argument is an accumulator */ mlsize_t num_args, i; /* Construction of fixpoint applied to its [rec_pos-1] first arguments */ Alloc_small(accu, rec_pos + 2, Closure_tag); Field(accu, 1) = coq_env; // We store the fixpoint in the first field for (i = 0; i < rec_pos; i++) Field(accu, i + 2) = sp[i]; // Storing args Code_val(accu) = pc; sp += rec_pos; *--sp = accu; /* Construction of the atom */ Alloc_small(accu, 2, ATOM_FIX_TAG); Field(accu,1) = sp[0]; Field(accu,0) = sp[1]; sp++; sp[0] = accu; /* Construction of the accumulator */ num_args = coq_extra_args - rec_pos; Alloc_small(accu, 2+num_args, Accu_tag); Code_val(accu) = accumulate; Field(accu,1) = sp[0]; sp++; for (i = 0; i < num_args;i++)Field(accu, i + 2) = sp[i]; sp += num_args; pc = (code_t)(sp[0]); coq_env = sp[1]; coq_extra_args = Long_val(sp[2]); sp += 3; } } Next; } Instruct(CLOSURE) { int nvars = *pc++; int i; print_instr("CLOSURE"); print_int(nvars); if (nvars > 0) *--sp = accu; Alloc_small(accu, 1 + nvars, Closure_tag); Code_val(accu) = pc + *pc; pc++; for (i = 0; i < nvars; i++) { print_lint(sp[i]); Field(accu, i + 1) = sp[i]; } sp += nvars; Next; } Instruct(CLOSUREREC) { int nfuncs = *pc++; int nvars = *pc++; int start = *pc++; int i; value * p; print_instr("CLOSUREREC"); if (nvars > 0) *--sp = accu; /* construction du vecteur de type */ Alloc_small(accu, nfuncs, Abstract_tag); for(i = 0; i < nfuncs; i++) { Field(accu,i) = (value)(pc+pc[i]); } pc += nfuncs; *--sp=accu; Alloc_small(accu, nfuncs * 2 + nvars, Closure_tag); Field(accu, nfuncs * 2 + nvars - 1) = *sp++; /* On remplie la partie pour les variables libres */ p = &Field(accu, nfuncs * 2 - 1); for (i = 0; i < nvars; i++) { *p++ = *sp++; } p = &Field(accu, 0); *p = (value) (pc + pc[0]); p++; for (i = 1; i < nfuncs; i++) { *p = Make_header(i * 2, Infix_tag, Caml_white); p++; /* color irrelevant. */ *p = (value) (pc + pc[i]); p++; } pc += nfuncs; accu = accu + 2 * start * sizeof(value); Next; } Instruct(CLOSURECOFIX){ int nfunc = *pc++; int nvars = *pc++; int start = *pc++; int i, j , size; value * p; print_instr("CLOSURECOFIX"); if (nvars > 0) *--sp = accu; /* construction du vecteur de type */ Alloc_small(accu, nfunc, Abstract_tag); for(i = 0; i < nfunc; i++) { Field(accu,i) = (value)(pc+pc[i]); } pc += nfunc; *--sp=accu; /* Creation des blocks accumulate */ for(i=0; i < nfunc; i++) { Alloc_small(accu, 2, Accu_tag); Code_val(accu) = accumulate; Field(accu,1) = Val_int(1); *--sp=accu; } /* creation des fonction cofix */ p = sp; size = nfunc + nvars + 2; for (i=0; i < nfunc; i++) { Alloc_small(accu, size, Closure_tag); Code_val(accu) = pc+pc[i]; for (j = 0; j < nfunc; j++) Field(accu, j+1) = p[j]; Field(accu, size - 1) = p[nfunc]; for (j = nfunc+1; j <= nfunc+nvars; j++) Field(accu, j) = p[j]; *--sp = accu; /* creation du block contenant le cofix */ Alloc_small(accu,1, ATOM_COFIX_TAG); Field(accu, 0) = sp[0]; *sp = accu; /* mise a jour du block accumulate */ caml_modify(&Field(p[i], 1),*sp); sp++; } pc += nfunc; accu = p[start]; sp = p + nfunc + 1 + nvars; print_instr("ici4"); Next; } Instruct(PUSHOFFSETCLOSURE) { print_instr("PUSHOFFSETCLOSURE"); *--sp = accu; } /* fallthrough */ Instruct(OFFSETCLOSURE) { print_instr("OFFSETCLOSURE"); accu = coq_env + *pc++ * sizeof(value); Next; } Instruct(PUSHOFFSETCLOSUREM2) { print_instr("PUSHOFFSETCLOSUREM2"); *--sp = accu; } /* fallthrough */ Instruct(OFFSETCLOSUREM2) { print_instr("OFFSETCLOSUREM2"); accu = coq_env - 2 * sizeof(value); Next; } Instruct(PUSHOFFSETCLOSURE0) { print_instr("PUSHOFFSETCLOSURE0"); *--sp = accu; }/* fallthrough */ Instruct(OFFSETCLOSURE0) { print_instr("OFFSETCLOSURE0"); accu = coq_env; Next; } Instruct(PUSHOFFSETCLOSURE2){ print_instr("PUSHOFFSETCLOSURE2"); *--sp = accu; /* fallthrough */ } Instruct(OFFSETCLOSURE2) { print_instr("OFFSETCLOSURE2"); accu = coq_env + 2 * sizeof(value); Next; } /* Access to global variables */ Instruct(PUSHGETGLOBAL) { print_instr("PUSH"); *--sp = accu; } /* Fallthrough */ Instruct(GETGLOBAL){ print_instr("GETGLOBAL"); print_int(*pc); accu = Field(coq_global_data, *pc); pc++; Next; } /* Allocation of blocks */ Instruct(MAKEBLOCK) { mlsize_t wosize = *pc++; tag_t tag = *pc++; mlsize_t i; value block; print_instr("MAKEBLOCK, tag="); Alloc_small(block, wosize, tag); Field(block, 0) = accu; for (i = 1; i < wosize; i++) Field(block, i) = *sp++; accu = block; Next; } Instruct(MAKEBLOCK1) { tag_t tag = *pc++; value block; print_instr("MAKEBLOCK1, tag="); print_int(tag); Alloc_small(block, 1, tag); Field(block, 0) = accu; accu = block; Next; } Instruct(MAKEBLOCK2) { tag_t tag = *pc++; value block; print_instr("MAKEBLOCK2, tag="); print_int(tag); Alloc_small(block, 2, tag); Field(block, 0) = accu; Field(block, 1) = sp[0]; sp += 1; accu = block; Next; } Instruct(MAKEBLOCK3) { tag_t tag = *pc++; value block; print_instr("MAKEBLOCK3, tag="); print_int(tag); Alloc_small(block, 3, tag); Field(block, 0) = accu; Field(block, 1) = sp[0]; Field(block, 2) = sp[1]; sp += 2; accu = block; Next; } Instruct(MAKEBLOCK4) { tag_t tag = *pc++; value block; print_instr("MAKEBLOCK4, tag="); print_int(tag); Alloc_small(block, 4, tag); Field(block, 0) = accu; Field(block, 1) = sp[0]; Field(block, 2) = sp[1]; Field(block, 3) = sp[2]; sp += 3; accu = block; Next; } /* Access to components of blocks */ Instruct(SWITCH) { uint32_t sizes = *pc++; print_instr("SWITCH"); print_int(sizes & 0xFFFFFF); if (Is_block(accu)) { long index = Tag_val(accu); print_instr("block"); print_lint(index); pc += pc[(sizes & 0xFFFFFF) + index]; } else { long index = Long_val(accu); print_instr("constant"); print_lint(index); pc += pc[index]; } Next; } Instruct(PUSHFIELDS){ int i; int size = *pc++; print_instr("PUSHFIELDS"); sp -= size; for(i=0;i p = 2v*w */ p = UI64_of_value (accu) * UI64_of_uint32 ((*sp++)^1); if (p == 0) { accu = (value)1; } else { /* the output type is supposed to have a constant constructor and a non-constant constructor (in that order), the tag of the non-constant constructor is then 1 */ Alloc_small(accu, 2, 1); /* ( _ , arity, tag ) */ /*unsigned shift*/ Field(accu, 0) = (value)((p >> 31)|1) ; /*higher part*/ Field(accu, 1) = (value)((uint32_t)p|1); /*lower part*/ } Next; } Instruct (DIV21INT31) { print_instr("DIV21INT31"); /* spiwack: takes three int31 (the two first ones represent an int62) and performs the euclidian division of the int62 by the int31 */ uint64_t bigint; bigint = UI64_of_value(accu); bigint = (bigint << 31) | UI64_of_value(*sp++); uint64_t divisor; divisor = UI64_of_value(*sp++); Alloc_small(accu, 2, 1); /* ( _ , arity, tag ) */ if (divisor == 0) { Field(accu, 0) = 1; /* 2*0+1 */ Field(accu, 1) = 1; /* 2*0+1 */ } else { uint64_t quo, mod; quo = bigint / divisor; mod = bigint % divisor; Field(accu, 0) = value_of_uint32((uint32_t)(quo)); Field(accu, 1) = value_of_uint32((uint32_t)(mod)); } Next; } Instruct (DIVINT31) { print_instr("DIVINT31"); /* spiwack: a priori no need of the NON_STANDARD_DIV_MOD flag since it probably only concerns negative number. needs to be checked at this point */ uint32_t divisor; divisor = uint32_of_value(*sp++); if (divisor == 0) { Alloc_small(accu, 2, 1); /* ( _ , arity, tag ) */ Field(accu, 0) = 1; /* 2*0+1 */ Field(accu, 1) = 1; /* 2*0+1 */ } else { uint32_t modulus; modulus = uint32_of_value(accu); Alloc_small(accu, 2, 1); /* ( _ , arity, tag ) */ Field(accu, 0) = value_of_uint32(modulus/divisor); Field(accu, 1) = value_of_uint32(modulus%divisor); } Next; } Instruct (ADDMULDIVINT31) { print_instr("ADDMULDIVINT31"); /* higher level shift (does shifts and cycles and such) */ uint32_t shiftby; shiftby = uint32_of_value(accu); if (shiftby > 31) { if (shiftby < 62) { sp++; accu = (value)(((((uint32_t)*sp++)^1) << (shiftby - 31)) | 1); } else { sp+=2; accu = (value)(1); } } else{ /* *sp = 2*x+1 --> accu = 2^(shiftby+1)*x */ accu = (value)((((uint32_t)*sp++)^1) << shiftby); /* accu = 2^(shiftby+1)*x --> 2^(shifby+1)*x+2*y/2^(31-shiftby)+1 */ accu = (value)((accu | (((uint32_t)(*sp++)) >> (31-shiftby)))|1); } Next; } Instruct (COMPAREINT31) { /* returns Eq if equal, Lt if accu is less than *sp, Gt otherwise */ /* assumes Inductive _ : _ := Eq | Lt | Gt */ print_instr("COMPAREINT31"); if ((uint32_t)accu == (uint32_t)*sp) { accu = 1; /* 2*0+1 */ sp++; } else{if ((uint32_t)accu < (uint32_t)(*sp++)) { accu = 3; /* 2*1+1 */ } else{ accu = 5; /* 2*2+1 */ }} Next; } Instruct (HEAD0INT31) { int r = 0; uint32_t x; print_instr("HEAD0INT31"); x = (uint32_t) accu; if (!(x & 0xFFFF0000)) { x <<= 16; r += 16; } if (!(x & 0xFF000000)) { x <<= 8; r += 8; } if (!(x & 0xF0000000)) { x <<= 4; r += 4; } if (!(x & 0xC0000000)) { x <<= 2; r += 2; } if (!(x & 0x80000000)) { x <<=1; r += 1; } if (!(x & 0x80000000)) { r += 1; } accu = value_of_uint32(r); Next; } Instruct (TAIL0INT31) { int r = 0; uint32_t x; print_instr("TAIL0INT31"); x = (((uint32_t) accu >> 1) | 0x80000000); if (!(x & 0xFFFF)) { x >>= 16; r += 16; } if (!(x & 0x00FF)) { x >>= 8; r += 8; } if (!(x & 0x000F)) { x >>= 4; r += 4; } if (!(x & 0x0003)) { x >>= 2; r += 2; } if (!(x & 0x0001)) { x >>=1; r += 1; } if (!(x & 0x0001)) { r += 1; } accu = value_of_uint32(r); Next; } Instruct (ISCONST) { /* Branches if the accu does not contain a constant (i.e., a non-block value) */ print_instr("ISCONST"); if ((accu & 1) == 0) /* last bit is 0 -> it is a block */ pc += *pc; else pc++; Next; } Instruct (ARECONST) { /* Branches if the n first values on the stack are not all constansts */ print_instr("ARECONST"); int i, n, ok; ok = 1; n = *pc++; for(i=0; i < n; i++) { if ((sp[i] & 1) == 0) { ok = 0; break; } } if(ok) pc++; else pc += *pc; Next; } Instruct (COMPINT31) { /* makes an 31-bit integer out of the accumulator and the 30 first values of the stack and put it in the accumulator (the accumulator then the topmost get to be the heavier bits) */ print_instr("COMPINT31"); int i; /*accu=accu or accu = (value)((unsigned long)1-accu) if bool is used for the bits */ for(i=0; i < 30; i++) { accu = (value) ((((uint32_t)accu-1) << 1) | *sp++); /* -1 removes the tag bit, << 1 multiplies the value by 2, | *sp++ pops the last value and add it (no carry involved) not that it reintroduces a tag bit */ /* alternative, if bool is used for the bits : accu = (value) ((((unsigned long)accu) << 1) & !*sp++); */ } Next; } Instruct (DECOMPINT31) { /* builds a block out of a 31-bit integer (from the accumulator), used before cases */ int i; value block; print_instr("DECOMPINT31"); Alloc_small(block, 31, 1); // Alloc_small(*, size, tag) for(i = 30; i >= 0; i--) { Field(block, i) = (value)(accu & 3); /* two last bits of the accumulator */ //Field(block, i) = 3; accu = (value) ((uint32_t)accu >> 1) | 1; /* last bit must be a one */ }; accu = block; Next; } Instruct (ORINT31) { /* returns the bitwise or */ print_instr("ORINT31"); accu = value_of_uint32((uint32_of_value(accu)) | (uint32_of_value(*sp++))); Next; } Instruct (ANDINT31) { /* returns the bitwise and */ print_instr("ANDINT31"); accu = value_of_uint32((uint32_of_value(accu)) & (uint32_of_value(*sp++))); Next; } Instruct (XORINT31) { /* returns the bitwise xor */ print_instr("XORINT31"); accu = value_of_uint32((uint32_of_value(accu)) ^ (uint32_of_value(*sp++))); Next; } /* /spiwack */ /* Debugging and machine control */ Instruct(STOP){ print_instr("STOP"); coq_sp = sp; CAMLreturn(accu); } #ifndef THREADED_CODE default: /*fprintf(stderr, "%d\n", *pc);*/ failwith("Coq VM: Fatal error: bad opcode"); } } #endif } value coq_push_ra(value code) { code_t tcode = Code_val(code); print_instr("push_ra"); coq_sp -= 3; coq_sp[0] = (value) tcode; coq_sp[1] = Val_unit; coq_sp[2] = Val_long(0); return Val_unit; } value coq_push_val(value v) { print_instr("push_val"); *--coq_sp = v; return Val_unit; } value coq_push_arguments(value args) { int nargs,i; value * sp = coq_sp; nargs = Wosize_val(args) - 2; CHECK_STACK(nargs); coq_sp -= nargs; print_instr("push_args");print_int(nargs); for(i = 0; i < nargs; i++) coq_sp[i] = Field(args, i+2); return Val_unit; } value coq_push_vstack(value stk, value max_stack_size) { int len,i; value * sp = coq_sp; len = Wosize_val(stk); CHECK_STACK(len); coq_sp -= len; print_instr("push_vstack");print_int(len); for(i = 0; i < len; i++) coq_sp[i] = Field(stk,i); sp = coq_sp; CHECK_STACK(uint32_of_value(max_stack_size)); return Val_unit; } value coq_interprete_ml(value tcode, value a, value t, value g, value e, value ea) { // Registering the other arguments w.r.t. the OCaml GC is done by coq_interprete CAMLparam1(tcode); print_instr("coq_interprete"); CAMLreturn (coq_interprete(Code_val(tcode), a, t, g, e, Long_val(ea))); print_instr("end coq_interprete"); } value coq_interprete_byte(value* argv, int argn){ return coq_interprete_ml(argv[0], argv[1], argv[2], argv[3], argv[4], argv[5]); } value coq_eval_tcode (value tcode, value t, value g, value e) { return coq_interprete_ml(tcode, Val_unit, t, g, e, 0); }