(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* true | InCustomEntry s1, InCustomEntry s2 -> String.equal s1 s2 | (InConstrEntry | InCustomEntry _), _ -> false let notation_entry_level_eq s1 s2 = match (s1,s2) with | InConstrEntrySomeLevel, InConstrEntrySomeLevel -> true | InCustomEntryLevel (s1,n1), InCustomEntryLevel (s2,n2) -> String.equal s1 s2 && n1 = n2 | (InConstrEntrySomeLevel | InCustomEntryLevel _), _ -> false let notation_eq (from1,ntn1) (from2,ntn2) = notation_entry_level_eq from1 from2 && String.equal ntn1 ntn2 let pr_notation (from,ntn) = qstring ntn ++ match from with InConstrEntrySomeLevel -> mt () | InCustomEntryLevel (s,n) -> str " in custom " ++ str s module NotationOrd = struct type t = notation let compare = Pervasives.compare end module NotationSet = Set.Make(NotationOrd) module NotationMap = CMap.Make(NotationOrd) (**********************************************************************) (* Scope of symbols *) type delimiters = string type notation_location = (DirPath.t * DirPath.t) * string type notation_data = { not_interp : interpretation; not_location : notation_location; } type scope = { notations: notation_data NotationMap.t; delimiters: delimiters option } (* Scopes table: scope_name -> symbol_interpretation *) let scope_map = ref String.Map.empty (* Delimiter table : delimiter -> scope_name *) let delimiters_map = ref String.Map.empty let empty_scope = { notations = NotationMap.empty; delimiters = None } let default_scope = "" (* empty name, not available from outside *) let init_scope_map () = scope_map := String.Map.add default_scope empty_scope !scope_map (**********************************************************************) (* Operations on scopes *) let declare_scope scope = try let _ = String.Map.find scope !scope_map in () with Not_found -> (* Flags.if_warn message ("Creating scope "^scope);*) scope_map := String.Map.add scope empty_scope !scope_map let error_unknown_scope sc = user_err ~hdr:"Notation" (str "Scope " ++ str sc ++ str " is not declared.") let find_scope scope = try String.Map.find scope !scope_map with Not_found -> error_unknown_scope scope let check_scope sc = let _ = find_scope sc in () (* [sc] might be here a [scope_name] or a [delimiter] (now allowed after Open Scope) *) let normalize_scope sc = try let _ = String.Map.find sc !scope_map in sc with Not_found -> try let sc = String.Map.find sc !delimiters_map in let _ = String.Map.find sc !scope_map in sc with Not_found -> error_unknown_scope sc (**********************************************************************) (* The global stack of scopes *) type scope_elem = Scope of scope_name | SingleNotation of notation type scopes = scope_elem list let scope_eq s1 s2 = match s1, s2 with | Scope s1, Scope s2 -> String.equal s1 s2 | SingleNotation s1, SingleNotation s2 -> notation_eq s1 s2 | Scope _, SingleNotation _ | SingleNotation _, Scope _ -> false let scope_stack = ref [] let current_scopes () = !scope_stack let scope_is_open_in_scopes sc l = List.exists (function Scope sc' -> String.equal sc sc' | _ -> false) l let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack) (* TODO: push nat_scope, z_scope, ... in scopes summary *) (* Exportation of scopes *) let open_scope i (_,(local,op,sc)) = if Int.equal i 1 then scope_stack := if op then sc :: !scope_stack else List.except scope_eq sc !scope_stack let cache_scope o = open_scope 1 o let subst_scope (subst,sc) = sc open Libobject let discharge_scope (_,(local,_,_ as o)) = if local then None else Some o let classify_scope (local,_,_ as o) = if local then Dispose else Substitute o let inScope : bool * bool * scope_elem -> obj = declare_object {(default_object "SCOPE") with cache_function = cache_scope; open_function = open_scope; subst_function = subst_scope; discharge_function = discharge_scope; classify_function = classify_scope } let open_close_scope (local,opening,sc) = Lib.add_anonymous_leaf (inScope (local,opening,Scope (normalize_scope sc))) let empty_scope_stack = [] let push_scope sc scopes = Scope sc :: scopes let push_scopes = List.fold_right push_scope let make_current_scopes (tmp_scope,scopes) = Option.fold_right push_scope tmp_scope (push_scopes scopes !scope_stack) (**********************************************************************) (* Delimiters *) let declare_delimiters scope key = let sc = find_scope scope in let newsc = { sc with delimiters = Some key } in begin match sc.delimiters with | None -> scope_map := String.Map.add scope newsc !scope_map | Some oldkey when String.equal oldkey key -> () | Some oldkey -> (** FIXME: implement multikey scopes? *) Flags.if_verbose Feedback.msg_info (str "Overwriting previous delimiting key " ++ str oldkey ++ str " in scope " ++ str scope); scope_map := String.Map.add scope newsc !scope_map end; try let oldscope = String.Map.find key !delimiters_map in if String.equal oldscope scope then () else begin Flags.if_verbose Feedback.msg_info (str "Hiding binding of key " ++ str key ++ str " to " ++ str oldscope); delimiters_map := String.Map.add key scope !delimiters_map end with Not_found -> delimiters_map := String.Map.add key scope !delimiters_map let remove_delimiters scope = let sc = find_scope scope in let newsc = { sc with delimiters = None } in match sc.delimiters with | None -> CErrors.user_err (str "No bound key for scope " ++ str scope ++ str ".") | Some key -> scope_map := String.Map.add scope newsc !scope_map; try let _ = ignore (String.Map.find key !delimiters_map) in delimiters_map := String.Map.remove key !delimiters_map with Not_found -> assert false (* A delimiter for scope [scope] should exist *) let find_delimiters_scope ?loc key = try String.Map.find key !delimiters_map with Not_found -> user_err ?loc ~hdr:"find_delimiters" (str "Unknown scope delimiting key " ++ str key ++ str ".") (* Uninterpretation tables *) type interp_rule = | NotationRule of scope_name option * notation | SynDefRule of KerName.t (* We define keys for glob_constr and aconstr to split the syntax entries according to the key of the pattern (adapted from Chet Murthy by HH) *) type key = | RefKey of GlobRef.t | Oth let key_compare k1 k2 = match k1, k2 with | RefKey gr1, RefKey gr2 -> RefOrdered.compare gr1 gr2 | RefKey _, Oth -> -1 | Oth, RefKey _ -> 1 | Oth, Oth -> 0 module KeyOrd = struct type t = key let compare = key_compare end module KeyMap = Map.Make(KeyOrd) type notation_rule = interp_rule * interpretation * int option let keymap_add key interp map = let old = try KeyMap.find key map with Not_found -> [] in KeyMap.add key (interp :: old) map let keymap_find key map = try KeyMap.find key map with Not_found -> [] (* Scopes table : interpretation -> scope_name *) let notations_key_table = ref (KeyMap.empty : notation_rule list KeyMap.t) let glob_prim_constr_key c = match DAst.get c with | GRef (ref, _) -> Some (canonical_gr ref) | GApp (c, _) -> begin match DAst.get c with | GRef (ref, _) -> Some (canonical_gr ref) | _ -> None end | _ -> None let glob_constr_keys c = match DAst.get c with | GApp (c, _) -> begin match DAst.get c with | GRef (ref, _) -> [RefKey (canonical_gr ref); Oth] | _ -> [Oth] end | GRef (ref,_) -> [RefKey (canonical_gr ref)] | _ -> [Oth] let cases_pattern_key c = match DAst.get c with | PatCstr (ref,_,_) -> RefKey (canonical_gr (ConstructRef ref)) | _ -> Oth let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *) | NApp (NRef ref,args) -> RefKey(canonical_gr ref), Some (List.length args) | NList (_,_,NApp (NRef ref,args),_,_) | NBinderList (_,_,NApp (NRef ref,args),_,_) -> RefKey (canonical_gr ref), Some (List.length args) | NRef ref -> RefKey(canonical_gr ref), None | NApp (_,args) -> Oth, Some (List.length args) | _ -> Oth, None (**********************************************************************) (* Interpreting numbers (not in summary because functional objects) *) type required_module = full_path * string list type rawnum = Constrexpr.raw_natural_number * Constrexpr.sign type prim_token_uid = string type 'a prim_token_interpreter = ?loc:Loc.t -> 'a -> glob_constr type 'a prim_token_uninterpreter = any_glob_constr -> 'a option type 'a prim_token_interpretation = 'a prim_token_interpreter * 'a prim_token_uninterpreter module InnerPrimToken = struct type interpreter = | RawNumInterp of (?loc:Loc.t -> rawnum -> glob_constr) | BigNumInterp of (?loc:Loc.t -> Bigint.bigint -> glob_constr) | StringInterp of (?loc:Loc.t -> string -> glob_constr) let interp_eq f f' = match f,f' with | RawNumInterp f, RawNumInterp f' -> f == f' | BigNumInterp f, BigNumInterp f' -> f == f' | StringInterp f, StringInterp f' -> f == f' | _ -> false let ofNumeral n s = if s then Bigint.of_string n else Bigint.neg (Bigint.of_string n) let do_interp ?loc interp primtok = match primtok, interp with | Numeral (n,s), RawNumInterp interp -> interp ?loc (n,s) | Numeral (n,s), BigNumInterp interp -> interp ?loc (ofNumeral n s) | String s, StringInterp interp -> interp ?loc s | _ -> raise Not_found type uninterpreter = | RawNumUninterp of (any_glob_constr -> rawnum option) | BigNumUninterp of (any_glob_constr -> Bigint.bigint option) | StringUninterp of (any_glob_constr -> string option) let uninterp_eq f f' = match f,f' with | RawNumUninterp f, RawNumUninterp f' -> f == f' | BigNumUninterp f, BigNumUninterp f' -> f == f' | StringUninterp f, StringUninterp f' -> f == f' | _ -> false let mkNumeral n = if Bigint.is_pos_or_zero n then Numeral (Bigint.to_string n, true) else Numeral (Bigint.to_string (Bigint.neg n), false) let mkString = function | None -> None | Some s -> if Unicode.is_utf8 s then Some (String s) else None let do_uninterp uninterp g = match uninterp with | RawNumUninterp u -> Option.map (fun (n,s) -> Numeral (n,s)) (u g) | BigNumUninterp u -> Option.map mkNumeral (u g) | StringUninterp u -> mkString (u g) end (* The following two tables of (un)interpreters will *not* be synchronized. But their indexes will be checked to be unique. These tables contain primitive token interpreters which are registered in plugins, such as string and ascii syntax. It is essential that only plugins add to these tables, and that vernacular commands do not. See https://github.com/coq/coq/issues/8401 for details of what goes wrong when vernacular commands add to these tables. *) let prim_token_interpreters = (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.interpreter) Hashtbl.t) let prim_token_uninterpreters = (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.uninterpreter) Hashtbl.t) (*******************************************************) (* Numeral notation interpretation *) type numeral_notation_error = | UnexpectedTerm of Constr.t | UnexpectedNonOptionTerm of Constr.t exception NumeralNotationError of Environ.env * Evd.evar_map * numeral_notation_error type numnot_option = | Nop | Warning of raw_natural_number | Abstract of raw_natural_number type int_ty = { uint : Names.inductive; int : Names.inductive } type z_pos_ty = { z_ty : Names.inductive; pos_ty : Names.inductive } type target_kind = | Int of int_ty (* Coq.Init.Decimal.int + uint *) | UInt of Names.inductive (* Coq.Init.Decimal.uint *) | Z of z_pos_ty (* Coq.Numbers.BinNums.Z and positive *) type option_kind = Option | Direct type conversion_kind = target_kind * option_kind type numeral_notation_obj = { to_kind : conversion_kind; to_ty : GlobRef.t; of_kind : conversion_kind; of_ty : GlobRef.t; num_ty : Libnames.qualid; (* for warnings / error messages *) warning : numnot_option } module Numeral = struct (** * Numeral notation *) (** Reduction The constr [c] below isn't necessarily well-typed, since we built it via an [mkApp] of a conversion function on a term that starts with the right constructor but might be partially applied. At least [c] is known to be evar-free, since it comes from our own ad-hoc [constr_of_glob] or from conversions such as [coqint_of_rawnum]. *) let eval_constr env sigma (c : Constr.t) = let c = EConstr.of_constr c in let sigma,t = Typing.type_of env sigma c in let c' = Vnorm.cbv_vm env sigma c t in EConstr.Unsafe.to_constr c' (* For testing with "compute" instead of "vm_compute" : let eval_constr env sigma (c : Constr.t) = let c = EConstr.of_constr c in let c' = Tacred.compute env sigma c in EConstr.Unsafe.to_constr c' *) let eval_constr_app env sigma c1 c2 = eval_constr env sigma (mkApp (c1,[| c2 |])) exception NotANumber let warn_large_num = CWarnings.create ~name:"large-number" ~category:"numbers" (fun ty -> strbrk "Stack overflow or segmentation fault happens when " ++ strbrk "working with large numbers in " ++ pr_qualid ty ++ strbrk " (threshold may vary depending" ++ strbrk " on your system limits and on the command executed).") let warn_abstract_large_num = CWarnings.create ~name:"abstract-large-number" ~category:"numbers" (fun (ty,f) -> strbrk "To avoid stack overflow, large numbers in " ++ pr_qualid ty ++ strbrk " are interpreted as applications of " ++ Nametab.pr_global_env (Termops.vars_of_env (Global.env ())) f ++ strbrk ".") (** Comparing two raw numbers (base 10, big-endian, non-negative). A bit nasty, but not critical: only used to decide when a number is considered as large (see warnings above). *) exception Comp of int let rec rawnum_compare s s' = let l = String.length s and l' = String.length s' in if l < l' then - rawnum_compare s' s else let d = l-l' in try for i = 0 to d-1 do if s.[i] != '0' then raise (Comp 1) done; for i = d to l-1 do let c = Pervasives.compare s.[i] s'.[i-d] in if c != 0 then raise (Comp c) done; 0 with Comp c -> c (***********************************************************************) (** ** Conversion between Coq [Decimal.int] and internal raw string *) (** Decimal.Nil has index 1, then Decimal.D0 has index 2 .. Decimal.D9 is 11 *) let digit_of_char c = assert ('0' <= c && c <= '9'); Char.code c - Char.code '0' + 2 let char_of_digit n = assert (2<=n && n<=11); Char.chr (n-2 + Char.code '0') let coquint_of_rawnum uint str = let nil = mkConstruct (uint,1) in let rec do_chars s i acc = if i < 0 then acc else let dg = mkConstruct (uint, digit_of_char s.[i]) in do_chars s (i-1) (mkApp(dg,[|acc|])) in do_chars str (String.length str - 1) nil let coqint_of_rawnum inds (str,sign) = let uint = coquint_of_rawnum inds.uint str in mkApp (mkConstruct (inds.int, if sign then 1 else 2), [|uint|]) let rawnum_of_coquint c = let rec of_uint_loop c buf = match Constr.kind c with | Construct ((_,1), _) (* Nil *) -> () | App (c, [|a|]) -> (match Constr.kind c with | Construct ((_,n), _) (* D0 to D9 *) -> let () = Buffer.add_char buf (char_of_digit n) in of_uint_loop a buf | _ -> raise NotANumber) | _ -> raise NotANumber in let buf = Buffer.create 64 in let () = of_uint_loop c buf in if Int.equal (Buffer.length buf) 0 then (* To avoid ambiguities between Nil and (D0 Nil), we choose to not display Nil alone as "0" *) raise NotANumber else Buffer.contents buf let rawnum_of_coqint c = match Constr.kind c with | App (c,[|c'|]) -> (match Constr.kind c with | Construct ((_,1), _) (* Pos *) -> (rawnum_of_coquint c', true) | Construct ((_,2), _) (* Neg *) -> (rawnum_of_coquint c', false) | _ -> raise NotANumber) | _ -> raise NotANumber (***********************************************************************) (** ** Conversion between Coq [Z] and internal bigint *) (** First, [positive] from/to bigint *) let rec pos_of_bigint posty n = match Bigint.div2_with_rest n with | (q, false) -> let c = mkConstruct (posty, 2) in (* xO *) mkApp (c, [| pos_of_bigint posty q |]) | (q, true) when not (Bigint.equal q Bigint.zero) -> let c = mkConstruct (posty, 1) in (* xI *) mkApp (c, [| pos_of_bigint posty q |]) | (q, true) -> mkConstruct (posty, 3) (* xH *) let rec bigint_of_pos c = match Constr.kind c with | Construct ((_, 3), _) -> (* xH *) Bigint.one | App (c, [| d |]) -> begin match Constr.kind c with | Construct ((_, n), _) -> begin match n with | 1 -> (* xI *) Bigint.add_1 (Bigint.mult_2 (bigint_of_pos d)) | 2 -> (* xO *) Bigint.mult_2 (bigint_of_pos d) | n -> assert false (* no other constructor of type positive *) end | x -> raise NotANumber end | x -> raise NotANumber (** Now, [Z] from/to bigint *) let z_of_bigint { z_ty; pos_ty } n = if Bigint.equal n Bigint.zero then mkConstruct (z_ty, 1) (* Z0 *) else let (s, n) = if Bigint.is_pos_or_zero n then (2, n) (* Zpos *) else (3, Bigint.neg n) (* Zneg *) in let c = mkConstruct (z_ty, s) in mkApp (c, [| pos_of_bigint pos_ty n |]) let bigint_of_z z = match Constr.kind z with | Construct ((_, 1), _) -> (* Z0 *) Bigint.zero | App (c, [| d |]) -> begin match Constr.kind c with | Construct ((_, n), _) -> begin match n with | 2 -> (* Zpos *) bigint_of_pos d | 3 -> (* Zneg *) Bigint.neg (bigint_of_pos d) | n -> assert false (* no other constructor of type Z *) end | _ -> raise NotANumber end | _ -> raise NotANumber (** The uninterp function below work at the level of [glob_constr] which is too low for us here. So here's a crude conversion back to [constr] for the subset that concerns us. *) let rec constr_of_glob env sigma g = match DAst.get g with | Glob_term.GRef (ConstructRef c, _) -> let sigma,c = Evd.fresh_constructor_instance env sigma c in sigma,mkConstructU c | Glob_term.GApp (gc, gcl) -> let sigma,c = constr_of_glob env sigma gc in let sigma,cl = List.fold_left_map (constr_of_glob env) sigma gcl in sigma,mkApp (c, Array.of_list cl) | _ -> raise NotANumber let rec glob_of_constr ?loc env sigma c = match Constr.kind c with | App (c, ca) -> let c = glob_of_constr ?loc env sigma c in let cel = List.map (glob_of_constr ?loc env sigma) (Array.to_list ca) in DAst.make ?loc (Glob_term.GApp (c, cel)) | Construct (c, _) -> DAst.make ?loc (Glob_term.GRef (ConstructRef c, None)) | Const (c, _) -> DAst.make ?loc (Glob_term.GRef (ConstRef c, None)) | Ind (ind, _) -> DAst.make ?loc (Glob_term.GRef (IndRef ind, None)) | Var id -> DAst.make ?loc (Glob_term.GRef (VarRef id, None)) | _ -> Loc.raise ?loc (NumeralNotationError(env,sigma,UnexpectedTerm c)) let no_such_number ?loc ty = CErrors.user_err ?loc (str "Cannot interpret this number as a value of type " ++ pr_qualid ty) let interp_option ty ?loc env sigma c = match Constr.kind c with | App (_Some, [| _; c |]) -> glob_of_constr ?loc env sigma c | App (_None, [| _ |]) -> no_such_number ?loc ty | x -> Loc.raise ?loc (NumeralNotationError(env,sigma,UnexpectedNonOptionTerm c)) let uninterp_option c = match Constr.kind c with | App (_Some, [| _; x |]) -> x | _ -> raise NotANumber let big2raw n = if Bigint.is_pos_or_zero n then (Bigint.to_string n, true) else (Bigint.to_string (Bigint.neg n), false) let raw2big (n,s) = if s then Bigint.of_string n else Bigint.neg (Bigint.of_string n) let interp o ?loc n = begin match o.warning with | Warning threshold when snd n && rawnum_compare (fst n) threshold >= 0 -> warn_large_num o.num_ty | _ -> () end; let c = match fst o.to_kind with | Int int_ty -> coqint_of_rawnum int_ty n | UInt uint_ty when snd n -> coquint_of_rawnum uint_ty (fst n) | UInt _ (* n <= 0 *) -> no_such_number ?loc o.num_ty | Z z_pos_ty -> z_of_bigint z_pos_ty (raw2big n) in let env = Global.env () in let sigma = Evd.from_env env in let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in let to_ty = EConstr.Unsafe.to_constr to_ty in match o.warning, snd o.to_kind with | Abstract threshold, Direct when rawnum_compare (fst n) threshold >= 0 -> warn_abstract_large_num (o.num_ty,o.to_ty); glob_of_constr ?loc env sigma (mkApp (to_ty,[|c|])) | _ -> let res = eval_constr_app env sigma to_ty c in match snd o.to_kind with | Direct -> glob_of_constr ?loc env sigma res | Option -> interp_option o.num_ty ?loc env sigma res let uninterp o (Glob_term.AnyGlobConstr n) = let env = Global.env () in let sigma = Evd.from_env env in let sigma,of_ty = Evd.fresh_global env sigma o.of_ty in let of_ty = EConstr.Unsafe.to_constr of_ty in try let sigma,n = constr_of_glob env sigma n in let c = eval_constr_app env sigma of_ty n in let c = if snd o.of_kind == Direct then c else uninterp_option c in match fst o.of_kind with | Int _ -> Some (rawnum_of_coqint c) | UInt _ -> Some (rawnum_of_coquint c, true) | Z _ -> Some (big2raw (bigint_of_z c)) with | Type_errors.TypeError _ | Pretype_errors.PretypeError _ -> None (* cf. eval_constr_app *) | NotANumber -> None (* all other functions except big2raw *) end (* A [prim_token_infos], which is synchronized with the document state, either contains a unique id pointing to an unsynchronized prim token function, or a numeral notation object describing how to interpret and uninterpret. We provide [prim_token_infos] because we expect plugins to provide their own interpretation functions, rather than going through numeral notations, which are available as a vernacular. *) type prim_token_interp_info = Uid of prim_token_uid | NumeralNotation of numeral_notation_obj type prim_token_infos = { pt_local : bool; (** Is this interpretation local? *) pt_scope : scope_name; (** Concerned scope *) pt_interp_info : prim_token_interp_info; (** Unique id "pointing" to (un)interp functions, OR a numeral notation object describing (un)interp functions *) pt_required : required_module; (** Module that should be loaded first *) pt_refs : GlobRef.t list; (** Entry points during uninterpretation *) pt_in_match : bool (** Is this prim token legal in match patterns ? *) } (* Table from scope_name to backtrack-able informations about interpreters (in particular interpreter unique id). *) let prim_token_interp_infos = ref (String.Map.empty : (required_module * prim_token_interp_info) String.Map.t) (* Table from global_reference to backtrack-able informations about prim_token uninterpretation (in particular uninterpreter unique id). *) let prim_token_uninterp_infos = ref (Refmap.empty : (scope_name * prim_token_interp_info * bool) Refmap.t) let hashtbl_check_and_set allow_overwrite uid f h eq = match Hashtbl.find h uid with | exception Not_found -> Hashtbl.add h uid f | _ when allow_overwrite -> Hashtbl.add h uid f | g when eq f g -> () | _ -> user_err ~hdr:"prim_token_interpreter" (str "Unique identifier " ++ str uid ++ str " already used to register a numeral or string (un)interpreter.") let register_gen_interpretation allow_overwrite uid (interp, uninterp) = hashtbl_check_and_set allow_overwrite uid interp prim_token_interpreters InnerPrimToken.interp_eq; hashtbl_check_and_set allow_overwrite uid uninterp prim_token_uninterpreters InnerPrimToken.uninterp_eq let register_rawnumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.RawNumInterp interp, InnerPrimToken.RawNumUninterp uninterp) let register_bignumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.BigNumInterp interp, InnerPrimToken.BigNumUninterp uninterp) let register_string_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.StringInterp interp, InnerPrimToken.StringUninterp uninterp) let cache_prim_token_interpretation (_,infos) = let ptii = infos.pt_interp_info in let sc = infos.pt_scope in declare_scope sc; prim_token_interp_infos := String.Map.add sc (infos.pt_required,ptii) !prim_token_interp_infos; List.iter (fun r -> prim_token_uninterp_infos := Refmap.add r (sc,ptii,infos.pt_in_match) !prim_token_uninterp_infos) infos.pt_refs let subst_prim_token_interpretation (subs,infos) = { infos with pt_refs = List.map (subst_global_reference subs) infos.pt_refs } let classify_prim_token_interpretation infos = if infos.pt_local then Dispose else Substitute infos let inPrimTokenInterp : prim_token_infos -> obj = declare_object {(default_object "PRIM-TOKEN-INTERP") with open_function = (fun i o -> if Int.equal i 1 then cache_prim_token_interpretation o); cache_function = cache_prim_token_interpretation; subst_function = subst_prim_token_interpretation; classify_function = classify_prim_token_interpretation} let enable_prim_token_interpretation infos = Lib.add_anonymous_leaf (inPrimTokenInterp infos) (** Compatibility. Avoid the next two functions, they will now store unnecessary objects in the library segment. Instead, combine [register_*_interpretation] and [enable_prim_token_interpretation] (the latter inside a [Mltop.declare_cache_obj]). *) let fresh_string_of = let count = ref 0 in fun root -> count := !count+1; (string_of_int !count)^"_"^root let declare_numeral_interpreter ?(local=false) sc dir interp (patl,uninterp,b) = let uid = fresh_string_of sc in register_bignumeral_interpretation uid (interp,uninterp); enable_prim_token_interpretation { pt_local = local; pt_scope = sc; pt_interp_info = Uid uid; pt_required = dir; pt_refs = List.map_filter glob_prim_constr_key patl; pt_in_match = b } let declare_string_interpreter ?(local=false) sc dir interp (patl,uninterp,b) = let uid = fresh_string_of sc in register_string_interpretation uid (interp,uninterp); enable_prim_token_interpretation { pt_local = local; pt_scope = sc; pt_interp_info = Uid uid; pt_required = dir; pt_refs = List.map_filter glob_prim_constr_key patl; pt_in_match = b } let check_required_module ?loc sc (sp,d) = try let _ = Nametab.global_of_path sp in () with Not_found -> match d with | [] -> user_err ?loc ~hdr:"prim_token_interpreter" (str "Cannot interpret in " ++ str sc ++ str " because " ++ pr_path sp ++ str " could not be found in the current environment.") | _ -> user_err ?loc ~hdr:"prim_token_interpreter" (str "Cannot interpret in " ++ str sc ++ str " without requiring first module " ++ str (List.last d) ++ str ".") (* Look if some notation or numeral printer in [scope] can be used in the scope stack [scopes], and if yes, using delimiters or not *) let find_with_delimiters = function | None -> None | Some scope -> match (String.Map.find scope !scope_map).delimiters with | Some key -> Some (Some scope, Some key) | None -> None let rec find_without_delimiters find (ntn_scope,ntn) = function | Scope scope :: scopes -> (* Is the expected ntn/numpr attached to the most recently open scope? *) begin match ntn_scope with | Some scope' when String.equal scope scope' -> Some (None,None) | _ -> (* If the most recently open scope has a notation/numeral printer but not the expected one then we need delimiters *) if find scope then find_with_delimiters ntn_scope else find_without_delimiters find (ntn_scope,ntn) scopes end | SingleNotation ntn' :: scopes -> begin match ntn_scope, ntn with | None, Some ntn when notation_eq ntn ntn' -> Some (None, None) | _ -> find_without_delimiters find (ntn_scope,ntn) scopes end | [] -> (* Can we switch to [scope]? Yes if it has defined delimiters *) find_with_delimiters ntn_scope (* The mapping between notations and their interpretation *) let warn_notation_overridden = CWarnings.create ~name:"notation-overridden" ~category:"parsing" (fun (ntn,which_scope) -> str "Notation" ++ spc () ++ pr_notation ntn ++ spc () ++ strbrk "was already used" ++ which_scope ++ str ".") let declare_notation_interpretation ntn scopt pat df ~onlyprint = let scope = match scopt with Some s -> s | None -> default_scope in let sc = find_scope scope in if not onlyprint then begin let () = if NotationMap.mem ntn sc.notations then let which_scope = match scopt with | None -> mt () | Some _ -> spc () ++ strbrk "in scope" ++ spc () ++ str scope in warn_notation_overridden (ntn,which_scope) in let notdata = { not_interp = pat; not_location = df; } in let sc = { sc with notations = NotationMap.add ntn notdata sc.notations } in scope_map := String.Map.add scope sc !scope_map end; begin match scopt with | None -> scope_stack := SingleNotation ntn :: !scope_stack | Some _ -> () end let declare_uninterpretation rule (metas,c as pat) = let (key,n) = notation_constr_key c in notations_key_table := keymap_add key (rule,pat,n) !notations_key_table let rec find_interpretation ntn find = function | [] -> raise Not_found | Scope scope :: scopes -> (try let (pat,df) = find scope in pat,(df,Some scope) with Not_found -> find_interpretation ntn find scopes) | SingleNotation ntn'::scopes when notation_eq ntn' ntn -> (try let (pat,df) = find default_scope in pat,(df,None) with Not_found -> (* e.g. because single notation only for constr, not cases_pattern *) find_interpretation ntn find scopes) | SingleNotation _::scopes -> find_interpretation ntn find scopes let find_notation ntn sc = let n = NotationMap.find ntn (find_scope sc).notations in (n.not_interp, n.not_location) let notation_of_prim_token = function | Numeral (n,true) -> InConstrEntrySomeLevel, n | Numeral (n,false) -> InConstrEntrySomeLevel, "- "^n | String _ -> raise Not_found let find_prim_token check_allowed ?loc p sc = (* Try for a user-defined numerical notation *) try let (_,c),df = find_notation (notation_of_prim_token p) sc in let pat = Notation_ops.glob_constr_of_notation_constr ?loc c in check_allowed pat; pat, df with Not_found -> (* Try for a primitive numerical notation *) let (spdir,info) = String.Map.find sc !prim_token_interp_infos in check_required_module ?loc sc spdir; let interp = match info with | Uid uid -> Hashtbl.find prim_token_interpreters uid | NumeralNotation o -> InnerPrimToken.RawNumInterp (Numeral.interp o) in let pat = InnerPrimToken.do_interp ?loc interp p in check_allowed pat; pat, ((dirpath (fst spdir),DirPath.empty),"") let interp_prim_token_gen ?loc g p local_scopes = let scopes = make_current_scopes local_scopes in let p_as_ntn = try notation_of_prim_token p with Not_found -> InConstrEntrySomeLevel,"" in try find_interpretation p_as_ntn (find_prim_token ?loc g p) scopes with Not_found -> user_err ?loc ~hdr:"interp_prim_token" ((match p with | Numeral _ -> str "No interpretation for numeral " ++ pr_notation (notation_of_prim_token p) | String s -> str "No interpretation for string " ++ qs s) ++ str ".") let interp_prim_token ?loc = interp_prim_token_gen ?loc (fun _ -> ()) let rec check_allowed_ref_in_pat looked_for = DAst.(with_val (function | GVar _ | GHole _ -> () | GRef (g,_) -> looked_for g | GApp (f, l) -> begin match DAst.get f with | GRef (g, _) -> looked_for g; List.iter (check_allowed_ref_in_pat looked_for) l | _ -> raise Not_found end | _ -> raise Not_found)) let interp_prim_token_cases_pattern_expr ?loc looked_for p = interp_prim_token_gen ?loc (check_allowed_ref_in_pat looked_for) p let interp_notation ?loc ntn local_scopes = let scopes = make_current_scopes local_scopes in try find_interpretation ntn (find_notation ntn) scopes with Not_found -> user_err ?loc (str "Unknown interpretation for notation " ++ pr_notation ntn ++ str ".") let uninterp_notations c = List.map_append (fun key -> keymap_find key !notations_key_table) (glob_constr_keys c) let uninterp_cases_pattern_notations c = keymap_find (cases_pattern_key c) !notations_key_table let uninterp_ind_pattern_notations ind = keymap_find (RefKey (canonical_gr (IndRef ind))) !notations_key_table let availability_of_notation (ntn_scope,ntn) scopes = let f scope = NotationMap.mem ntn (String.Map.find scope !scope_map).notations in find_without_delimiters f (ntn_scope,Some ntn) (make_current_scopes scopes) (* We support coercions from a custom entry at some level to an entry at some level (possibly the same), and from and to the constr entry. E.g.: Notation "[ expr ]" := expr (expr custom group at level 1). Notation "( x )" := x (in custom group at level 0, x at level 1). Notation "{ x }" := x (in custom group at level 0, x constr). Supporting any level is maybe overkill in that coercions are commonly from the lowest level of the source entry to the highest level of the target entry. *) type entry_coercion = notation list module EntryCoercionOrd = struct type t = notation_entry * notation_entry let compare = Pervasives.compare end module EntryCoercionMap = Map.Make(EntryCoercionOrd) let entry_coercion_map = ref EntryCoercionMap.empty let level_ord lev lev' = match lev, lev' with | None, _ -> true | _, None -> true | Some n, Some n' -> n <= n' let rec search nfrom nto = function | [] -> raise Not_found | ((pfrom,pto),coe)::l -> if level_ord pfrom nfrom && level_ord nto pto then coe else search nfrom nto l let decompose_custom_entry = function | InConstrEntrySomeLevel -> InConstrEntry, None | InCustomEntryLevel (s,n) -> InCustomEntry s, Some n let availability_of_entry_coercion entry entry' = let entry, lev = decompose_custom_entry entry in let entry', lev' = decompose_custom_entry entry' in if notation_entry_eq entry entry' && level_ord lev' lev then Some [] else try Some (search lev lev' (EntryCoercionMap.find (entry,entry') !entry_coercion_map)) with Not_found -> None let better_path ((lev1,lev2),path) ((lev1',lev2'),path') = (* better = shorter and lower source and higher target *) level_ord lev1 lev1' && level_ord lev2' lev2 && List.length path <= List.length path' let shorter_path (_,path) (_,path') = List.length path <= List.length path' let rec insert_coercion_path path = function | [] -> [path] | path'::paths as allpaths -> (* If better or equal we keep the more recent one *) if better_path path path' then path::paths else if better_path path' path then allpaths else if shorter_path path path' then path::allpaths else path'::insert_coercion_path path paths let declare_entry_coercion (entry,_ as ntn) entry' = let entry, lev = decompose_custom_entry entry in let entry', lev' = decompose_custom_entry entry' in (* Transitive closure *) let toaddleft = EntryCoercionMap.fold (fun (entry'',entry''') paths l -> List.fold_right (fun ((lev'',lev'''),path) l -> if notation_entry_eq entry entry''' && level_ord lev lev''' && not (notation_entry_eq entry' entry'') then ((entry'',entry'),((lev'',lev'),path@[ntn]))::l else l) paths l) !entry_coercion_map [] in let toaddright = EntryCoercionMap.fold (fun (entry'',entry''') paths l -> List.fold_right (fun ((lev'',lev'''),path) l -> if entry' = entry'' && level_ord lev' lev'' && entry <> entry''' then ((entry,entry'''),((lev,lev'''),path@[ntn]))::l else l) paths l) !entry_coercion_map [] in entry_coercion_map := List.fold_right (fun (pair,path) -> let olds = try EntryCoercionMap.find pair !entry_coercion_map with Not_found -> [] in EntryCoercionMap.add pair (insert_coercion_path path olds)) (((entry,entry'),((lev,lev'),[ntn]))::toaddright@toaddleft) !entry_coercion_map let entry_has_global_map = ref String.Map.empty let declare_custom_entry_has_global s n = try let p = String.Map.find s !entry_has_global_map in user_err (str "Custom entry " ++ str s ++ str " has already a rule for global references at level " ++ int p ++ str ".") with Not_found -> entry_has_global_map := String.Map.add s n !entry_has_global_map let entry_has_global = function | InConstrEntrySomeLevel -> true | InCustomEntryLevel (s,n) -> try String.Map.find s !entry_has_global_map <= n with Not_found -> false let entry_has_ident_map = ref String.Map.empty let declare_custom_entry_has_ident s n = try let p = String.Map.find s !entry_has_ident_map in user_err (str "Custom entry " ++ str s ++ str " has already a rule for global references at level " ++ int p ++ str ".") with Not_found -> entry_has_ident_map := String.Map.add s n !entry_has_ident_map let entry_has_ident = function | InConstrEntrySomeLevel -> true | InCustomEntryLevel (s,n) -> try String.Map.find s !entry_has_ident_map <= n with Not_found -> false let uninterp_prim_token c = match glob_prim_constr_key c with | None -> raise Notation_ops.No_match | Some r -> try let (sc,info,_) = Refmap.find r !prim_token_uninterp_infos in let uninterp = match info with | Uid uid -> Hashtbl.find prim_token_uninterpreters uid | NumeralNotation o -> InnerPrimToken.RawNumUninterp (Numeral.uninterp o) in match InnerPrimToken.do_uninterp uninterp (AnyGlobConstr c) with | None -> raise Notation_ops.No_match | Some n -> (sc,n) with Not_found -> raise Notation_ops.No_match let uninterp_prim_token_cases_pattern c = match glob_constr_of_closed_cases_pattern c with | exception Not_found -> raise Notation_ops.No_match | na,c -> let (sc,n) = uninterp_prim_token c in (na,sc,n) let availability_of_prim_token n printer_scope local_scopes = let f scope = try let uid = snd (String.Map.find scope !prim_token_interp_infos) in let open InnerPrimToken in match n, uid with | Numeral _, NumeralNotation _ -> true | _, NumeralNotation _ -> false | _, Uid uid -> let interp = Hashtbl.find prim_token_interpreters uid in match n, interp with | Numeral _, (RawNumInterp _ | BigNumInterp _) -> true | String _, StringInterp _ -> true | _ -> false with Not_found -> false in let scopes = make_current_scopes local_scopes in Option.map snd (find_without_delimiters f (Some printer_scope,None) scopes) (* Miscellaneous *) let pair_eq f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2 let notation_binder_source_eq s1 s2 = match s1, s2 with | NtnParsedAsIdent, NtnParsedAsIdent -> true | NtnParsedAsPattern b1, NtnParsedAsPattern b2 -> b1 = b2 | NtnBinderParsedAsConstr bk1, NtnBinderParsedAsConstr bk2 -> bk1 = bk2 | (NtnParsedAsIdent | NtnParsedAsPattern _ | NtnBinderParsedAsConstr _), _ -> false let ntpe_eq t1 t2 = match t1, t2 with | NtnTypeConstr, NtnTypeConstr -> true | NtnTypeBinder s1, NtnTypeBinder s2 -> notation_binder_source_eq s1 s2 | NtnTypeConstrList, NtnTypeConstrList -> true | NtnTypeBinderList, NtnTypeBinderList -> true | (NtnTypeConstr | NtnTypeBinder _ | NtnTypeConstrList | NtnTypeBinderList), _ -> false let var_attributes_eq (_, ((entry1, sc1), tp1)) (_, ((entry2, sc2), tp2)) = notation_entry_level_eq entry1 entry2 && pair_eq (Option.equal String.equal) (List.equal String.equal) sc1 sc2 && ntpe_eq tp1 tp2 let interpretation_eq (vars1, t1) (vars2, t2) = List.equal var_attributes_eq vars1 vars2 && Notation_ops.eq_notation_constr (List.map fst vars1, List.map fst vars2) t1 t2 let exists_notation_in_scope scopt ntn onlyprint r = let scope = match scopt with Some s -> s | None -> default_scope in try let sc = String.Map.find scope !scope_map in let n = NotationMap.find ntn sc.notations in interpretation_eq n.not_interp r with Not_found -> false let isNVar_or_NHole = function NVar _ | NHole _ -> true | _ -> false (**********************************************************************) (* Mapping classes to scopes *) open Classops type scope_class = cl_typ let scope_class_compare : scope_class -> scope_class -> int = cl_typ_ord let compute_scope_class sigma t = let (cl,_,_) = find_class_type sigma t in cl module ScopeClassOrd = struct type t = scope_class let compare = scope_class_compare end module ScopeClassMap = Map.Make(ScopeClassOrd) let initial_scope_class_map : scope_name ScopeClassMap.t = ScopeClassMap.empty let scope_class_map = ref initial_scope_class_map let declare_scope_class sc cl = scope_class_map := ScopeClassMap.add cl sc !scope_class_map let find_scope_class cl = ScopeClassMap.find cl !scope_class_map let find_scope_class_opt = function | None -> None | Some cl -> try Some (find_scope_class cl) with Not_found -> None (**********************************************************************) (* Special scopes associated to arguments of a global reference *) let rec compute_arguments_classes sigma t = match EConstr.kind sigma (Reductionops.whd_betaiotazeta sigma t) with | Prod (_,t,u) -> let cl = try Some (compute_scope_class sigma t) with Not_found -> None in cl :: compute_arguments_classes sigma u | _ -> [] let compute_arguments_scope_full sigma t = let cls = compute_arguments_classes sigma t in let scs = List.map find_scope_class_opt cls in scs, cls let compute_arguments_scope sigma t = fst (compute_arguments_scope_full sigma t) let compute_type_scope sigma t = find_scope_class_opt (try Some (compute_scope_class sigma t) with Not_found -> None) let current_type_scope_name () = find_scope_class_opt (Some CL_SORT) let scope_class_of_class (x : cl_typ) : scope_class = x (** Updating a scope list, thanks to a list of argument classes and the current Bind Scope base. When some current scope have been manually given, the corresponding argument class is emptied below, so this manual scope will be preserved. *) let update_scope cl sco = match find_scope_class_opt cl with | None -> sco | sco' -> sco' let rec update_scopes cls scl = match cls, scl with | [], _ -> scl | _, [] -> List.map find_scope_class_opt cls | cl :: cls, sco :: scl -> update_scope cl sco :: update_scopes cls scl let arguments_scope = ref Refmap.empty type arguments_scope_discharge_request = | ArgsScopeAuto | ArgsScopeManual | ArgsScopeNoDischarge let load_arguments_scope _ (_,(_,r,n,scl,cls)) = List.iter (Option.iter check_scope) scl; let initial_stamp = ScopeClassMap.empty in arguments_scope := Refmap.add r (scl,cls,initial_stamp) !arguments_scope let cache_arguments_scope o = load_arguments_scope 1 o let subst_scope_class subst cs = try Some (subst_cl_typ subst cs) with Not_found -> None let subst_arguments_scope (subst,(req,r,n,scl,cls)) = let r' = fst (subst_global subst r) in let subst_cl ocl = match ocl with | None -> ocl | Some cl -> match subst_scope_class subst cl with | Some cl' as ocl' when cl' != cl -> ocl' | _ -> ocl in let cls' = List.Smart.map subst_cl cls in (ArgsScopeNoDischarge,r',n,scl,cls') let discharge_arguments_scope (_,(req,r,n,l,_)) = if req == ArgsScopeNoDischarge || (isVarRef r && Lib.is_in_section r) then None else let n = try let vars = Lib.variable_section_segment_of_reference r in vars |> List.map fst |> List.filter is_local_assum |> List.length with Not_found (* Not a ref defined in this section *) -> 0 in Some (req,Lib.discharge_global r,n,l,[]) let classify_arguments_scope (req,_,_,_,_ as obj) = if req == ArgsScopeNoDischarge then Dispose else Substitute obj let rebuild_arguments_scope sigma (req,r,n,l,_) = match req with | ArgsScopeNoDischarge -> assert false | ArgsScopeAuto -> let env = Global.env () in (*FIXME?*) let typ = EConstr.of_constr @@ fst (Global.type_of_global_in_context env r) in let scs,cls = compute_arguments_scope_full sigma typ in (req,r,List.length scs,scs,cls) | ArgsScopeManual -> (* Add to the manually given scopes the one found automatically for the extra parameters of the section. Discard the classes of the manually given scopes to avoid further re-computations. *) let env = Global.env () in (*FIXME?*) let typ = EConstr.of_constr @@ fst (Global.type_of_global_in_context env r) in let l',cls = compute_arguments_scope_full sigma typ in let l1 = List.firstn n l' in let cls1 = List.firstn n cls in (req,r,0,l1@l,cls1) type arguments_scope_obj = arguments_scope_discharge_request * GlobRef.t * (* Used to communicate information from discharge to rebuild *) (* set to 0 otherwise *) int * scope_name option list * scope_class option list let inArgumentsScope : arguments_scope_obj -> obj = declare_object {(default_object "ARGUMENTS-SCOPE") with cache_function = cache_arguments_scope; load_function = load_arguments_scope; subst_function = subst_arguments_scope; classify_function = classify_arguments_scope; discharge_function = discharge_arguments_scope; (* XXX: Should we pass the sigma here or not, see @herbelin's comment in 6511 *) rebuild_function = rebuild_arguments_scope Evd.empty } let is_local local ref = local || isVarRef ref && Lib.is_in_section ref let declare_arguments_scope_gen req r n (scl,cls) = Lib.add_anonymous_leaf (inArgumentsScope (req,r,n,scl,cls)) let declare_arguments_scope local r scl = let req = if is_local local r then ArgsScopeNoDischarge else ArgsScopeManual in (* We empty the list of argument classes to disable further scope re-computations and keep these manually given scopes. *) declare_arguments_scope_gen req r 0 (scl,[]) let find_arguments_scope r = try let (scl,cls,stamp) = Refmap.find r !arguments_scope in let cur_stamp = !scope_class_map in if stamp == cur_stamp then scl else (* Recent changes in the Bind Scope base, we re-compute the scopes *) let scl' = update_scopes cls scl in arguments_scope := Refmap.add r (scl',cls,cur_stamp) !arguments_scope; scl' with Not_found -> [] let declare_ref_arguments_scope sigma ref = let env = Global.env () in (* FIXME? *) let typ = EConstr.of_constr @@ fst @@ Global.type_of_global_in_context env ref in let (scs,cls as o) = compute_arguments_scope_full sigma typ in declare_arguments_scope_gen ArgsScopeAuto ref (List.length scs) o (********************************) (* Encoding notations as string *) type symbol = | Terminal of string | NonTerminal of Id.t | SProdList of Id.t * symbol list | Break of int let rec symbol_eq s1 s2 = match s1, s2 with | Terminal s1, Terminal s2 -> String.equal s1 s2 | NonTerminal id1, NonTerminal id2 -> Id.equal id1 id2 | SProdList (id1, l1), SProdList (id2, l2) -> Id.equal id1 id2 && List.equal symbol_eq l1 l2 | Break i1, Break i2 -> Int.equal i1 i2 | _ -> false let rec string_of_symbol = function | NonTerminal _ -> ["_"] | Terminal "_" -> ["'_'"] | Terminal s -> [s] | SProdList (_,l) -> let l = List.flatten (List.map string_of_symbol l) in "_"::l@".."::l@["_"] | Break _ -> [] let make_notation_key from symbols = (from,String.concat " " (List.flatten (List.map string_of_symbol symbols))) let decompose_notation_key (from,s) = let len = String.length s in let rec decomp_ntn dirs n = if n>=len then List.rev dirs else let pos = try String.index_from s n ' ' with Not_found -> len in let tok = match String.sub s n (pos-n) with | "_" -> NonTerminal (Id.of_string "_") | s -> Terminal (String.drop_simple_quotes s) in decomp_ntn (tok::dirs) (pos+1) in from, decomp_ntn [] 0 (************) (* Printing *) let pr_delimiters_info = function | None -> str "No delimiting key" | Some key -> str "Delimiting key is " ++ str key let classes_of_scope sc = ScopeClassMap.fold (fun cl sc' l -> if String.equal sc sc' then cl::l else l) !scope_class_map [] let pr_scope_class = pr_class let pr_scope_classes sc = let l = classes_of_scope sc in match l with | [] -> mt () | _ :: ll -> let opt_s = match ll with [] -> mt () | _ -> str "es" in hov 0 (str "Bound to class" ++ opt_s ++ spc() ++ prlist_with_sep spc pr_scope_class l) ++ fnl() let pr_notation_info prglob ntn c = str "\"" ++ str ntn ++ str "\" := " ++ prglob (Notation_ops.glob_constr_of_notation_constr c) let pr_named_scope prglob scope sc = (if String.equal scope default_scope then match NotationMap.cardinal sc.notations with | 0 -> str "No lonely notation" | n -> str "Lonely notation" ++ (if Int.equal n 1 then mt() else str"s") else str "Scope " ++ str scope ++ fnl () ++ pr_delimiters_info sc.delimiters) ++ fnl () ++ pr_scope_classes scope ++ NotationMap.fold (fun ntn { not_interp = (_, r); not_location = (_, df) } strm -> pr_notation_info prglob df r ++ fnl () ++ strm) sc.notations (mt ()) let pr_scope prglob scope = pr_named_scope prglob scope (find_scope scope) let pr_scopes prglob = String.Map.fold (fun scope sc strm -> pr_named_scope prglob scope sc ++ fnl () ++ strm) !scope_map (mt ()) let rec find_default ntn = function | [] -> None | Scope scope :: scopes -> if NotationMap.mem ntn (find_scope scope).notations then Some scope else find_default ntn scopes | SingleNotation ntn' :: scopes -> if notation_eq ntn ntn' then Some default_scope else find_default ntn scopes let factorize_entries = function | [] -> [] | (ntn,c)::l -> let (ntn,l_of_ntn,rest) = List.fold_left (fun (a',l,rest) (a,c) -> if notation_eq a a' then (a',c::l,rest) else (a,[c],(a',l)::rest)) (ntn,[c],[]) l in (ntn,l_of_ntn)::rest type symbol_token = WhiteSpace of int | String of string let split_notation_string str = let push_token beg i l = if Int.equal beg i then l else let s = String.sub str beg (i - beg) in String s :: l in let push_whitespace beg i l = if Int.equal beg i then l else WhiteSpace (i-beg) :: l in let rec loop beg i = if i < String.length str then if str.[i] == ' ' then push_token beg i (loop_on_whitespace (i+1) (i+1)) else loop beg (i+1) else push_token beg i [] and loop_on_whitespace beg i = if i < String.length str then if str.[i] != ' ' then push_whitespace beg i (loop i (i+1)) else loop_on_whitespace beg (i+1) else push_whitespace beg i [] in loop 0 0 let rec raw_analyze_notation_tokens = function | [] -> [] | String ".." :: sl -> NonTerminal Notation_ops.ldots_var :: raw_analyze_notation_tokens sl | String "_" :: _ -> user_err Pp.(str "_ must be quoted.") | String x :: sl when Id.is_valid x -> NonTerminal (Names.Id.of_string x) :: raw_analyze_notation_tokens sl | String s :: sl -> Terminal (String.drop_simple_quotes s) :: raw_analyze_notation_tokens sl | WhiteSpace n :: sl -> Break n :: raw_analyze_notation_tokens sl let decompose_raw_notation ntn = raw_analyze_notation_tokens (split_notation_string ntn) let possible_notations ntn = (* We collect the possible interpretations of a notation string depending on whether it is in "x 'U' y" or "_ U _" format *) let toks = split_notation_string ntn in if List.exists (function String "_" -> true | _ -> false) toks then (* Only "_ U _" format *) [ntn] else let _,ntn' = make_notation_key None (raw_analyze_notation_tokens toks) in if String.equal ntn ntn' then (* Only symbols *) [ntn] else [ntn;ntn'] let browse_notation strict ntn map = let ntns = possible_notations ntn in let find (from,ntn' as fullntn') ntn = if String.contains ntn ' ' then String.equal ntn ntn' else let _,toks = decompose_notation_key fullntn' in let get_terminals = function Terminal ntn -> Some ntn | _ -> None in let trms = List.map_filter get_terminals toks in if strict then String.List.equal [ntn] trms else String.List.mem ntn trms in let l = String.Map.fold (fun scope_name sc -> NotationMap.fold (fun ntn { not_interp = (_, r); not_location = df } l -> if List.exists (find ntn) ntns then (ntn,(scope_name,r,df))::l else l) sc.notations) map [] in List.sort (fun x y -> String.compare (snd (fst x)) (snd (fst y))) l let global_reference_of_notation test (ntn,(sc,c,_)) = match c with | NRef ref when test ref -> Some (ntn,sc,ref) | NApp (NRef ref, l) when List.for_all isNVar_or_NHole l && test ref -> Some (ntn,sc,ref) | _ -> None let error_ambiguous_notation ?loc _ntn = user_err ?loc (str "Ambiguous notation.") let error_notation_not_reference ?loc ntn = user_err ?loc (str "Unable to interpret " ++ quote (str ntn) ++ str " as a reference.") let interp_notation_as_global_reference ?loc test ntn sc = let scopes = match sc with | Some sc -> let scope = find_scope (find_delimiters_scope sc) in String.Map.add sc scope String.Map.empty | None -> !scope_map in let ntns = browse_notation true ntn scopes in let refs = List.map (global_reference_of_notation test) ntns in match Option.List.flatten refs with | [_,_,ref] -> ref | [] -> error_notation_not_reference ?loc ntn | refs -> let f (ntn,sc,ref) = let def = find_default ntn !scope_stack in match def with | None -> false | Some sc' -> String.equal sc sc' in match List.filter f refs with | [_,_,ref] -> ref | [] -> error_notation_not_reference ?loc ntn | _ -> error_ambiguous_notation ?loc ntn let locate_notation prglob ntn scope = let ntns = factorize_entries (browse_notation false ntn !scope_map) in let scopes = Option.fold_right push_scope scope !scope_stack in match ntns with | [] -> str "Unknown notation" | _ -> str "Notation" ++ fnl () ++ prlist_with_sep fnl (fun (ntn,l) -> let scope = find_default ntn scopes in prlist (fun (sc,r,(_,df)) -> hov 0 ( pr_notation_info prglob df r ++ (if String.equal sc default_scope then mt () else (spc () ++ str ": " ++ str sc)) ++ (if Option.equal String.equal (Some sc) scope then spc () ++ str "(default interpretation)" else mt ()))) l) ntns let collect_notation_in_scope scope sc known = assert (not (String.equal scope default_scope)); NotationMap.fold (fun ntn { not_interp = (_, r); not_location = (_, df) } (l,known as acc) -> if List.mem_f notation_eq ntn known then acc else ((df,r)::l,ntn::known)) sc.notations ([],known) let collect_notations stack = fst (List.fold_left (fun (all,knownntn as acc) -> function | Scope scope -> if String.List.mem_assoc scope all then acc else let (l,knownntn) = collect_notation_in_scope scope (find_scope scope) knownntn in ((scope,l)::all,knownntn) | SingleNotation ntn -> if List.mem_f notation_eq ntn knownntn then (all,knownntn) else let { not_interp = (_, r); not_location = (_, df) } = NotationMap.find ntn (find_scope default_scope).notations in let all' = match all with | (s,lonelyntn)::rest when String.equal s default_scope -> (s,(df,r)::lonelyntn)::rest | _ -> (default_scope,[df,r])::all in (all',ntn::knownntn)) ([],[]) stack) let pr_visible_in_scope prglob (scope,ntns) = let strm = List.fold_right (fun (df,r) strm -> pr_notation_info prglob df r ++ fnl () ++ strm) ntns (mt ()) in (if String.equal scope default_scope then str "Lonely notation" ++ (match ntns with [_] -> mt () | _ -> str "s") else str "Visible in scope " ++ str scope) ++ fnl () ++ strm let pr_scope_stack prglob stack = List.fold_left (fun strm scntns -> strm ++ pr_visible_in_scope prglob scntns ++ fnl ()) (mt ()) (collect_notations stack) let pr_visibility prglob = function | Some scope -> pr_scope_stack prglob (push_scope scope !scope_stack) | None -> pr_scope_stack prglob !scope_stack (**********************************************************************) (* Synchronisation with reset *) let freeze _ = (!scope_map, !scope_stack, !arguments_scope, !delimiters_map, !notations_key_table, !scope_class_map, !prim_token_interp_infos, !prim_token_uninterp_infos, !entry_coercion_map, !entry_has_global_map, !entry_has_ident_map) let unfreeze (scm,scs,asc,dlm,fkm,clsc,ptii,ptui,coe,globs,ids) = scope_map := scm; scope_stack := scs; delimiters_map := dlm; arguments_scope := asc; notations_key_table := fkm; scope_class_map := clsc; prim_token_interp_infos := ptii; prim_token_uninterp_infos := ptui; entry_coercion_map := coe; entry_has_global_map := globs; entry_has_ident_map := ids let init () = init_scope_map (); delimiters_map := String.Map.empty; notations_key_table := KeyMap.empty; scope_class_map := initial_scope_class_map; prim_token_interp_infos := String.Map.empty; prim_token_uninterp_infos := Refmap.empty let _ = Summary.declare_summary "symbols" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init } let with_notation_protection f x = let fs = freeze false in try let a = f x in unfreeze fs; a with reraise -> let reraise = CErrors.push reraise in let () = unfreeze fs in iraise reraise