(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* glob_constr translation: - it adds holes for implicit arguments - it replaces notations by their value (scopes stuff are here) - it recognizes global vars from local ones - it prepares pattern matching problems (a pattern becomes a tree where nodes are constructor/variable pairs and leafs are variables) All that at once, fasten your seatbelt! *) (* To interpret implicits and arg scopes of variables in inductive types and recursive definitions and of projection names in records *) type var_internalization_type = | Inductive of Id.t list (* list of params *) * bool (* true = check for possible capture *) | Recursive | Method | Variable type var_internalization_data = (* type of the "free" variable, for coqdoc, e.g. while typing the constructor of JMeq, "JMeq" behaves as a variable of type Inductive *) var_internalization_type * (* impargs to automatically add to the variable, e.g. for "JMeq A a B b" in implicit mode, this is [A;B] and this adds (A:=A) and (B:=B) *) Id.t list * (* signature of impargs of the variable *) Impargs.implicit_status list * (* subscopes of the args of the variable *) scope_name option list type internalization_env = (var_internalization_data) Id.Map.t type ltac_sign = { ltac_vars : Id.Set.t; ltac_bound : Id.Set.t; ltac_extra : Genintern.Store.t; } let interning_grammar = ref false (* Historically for parsing grammar rules, but in fact used only for translator, v7 parsing, and unstrict tactic internalization *) let for_grammar f x = interning_grammar := true; let a = f x in interning_grammar := false; a (**********************************************************************) (* Locating reference, possibly via an abbreviation *) let locate_reference qid = Smartlocate.global_of_extended_global (Nametab.locate_extended qid) let is_global id = try let _ = locate_reference (qualid_of_ident id) in true with Not_found -> false let global_reference_of_reference qid = locate_reference qid let global_reference id = locate_reference (qualid_of_ident id) let construct_reference ctx id = try VarRef (let _ = Context.Named.lookup id ctx in id) with Not_found -> global_reference id let global_reference_in_absolute_module dir id = Nametab.global_of_path (Libnames.make_path dir id) (**********************************************************************) (* Internalization errors *) type internalization_error = | VariableCapture of Id.t * Id.t | IllegalMetavariable | NotAConstructor of qualid | UnboundFixName of bool * Id.t | NonLinearPattern of Id.t | BadPatternsNumber of int * int exception InternalizationError of internalization_error Loc.located let explain_variable_capture id id' = Id.print id ++ str " is dependent in the type of " ++ Id.print id' ++ strbrk ": cannot interpret both of them with the same type" let explain_illegal_metavariable = str "Metavariables allowed only in patterns" let explain_not_a_constructor qid = str "Unknown constructor: " ++ pr_qualid qid let explain_unbound_fix_name is_cofix id = str "The name" ++ spc () ++ Id.print id ++ spc () ++ str "is not bound in the corresponding" ++ spc () ++ str (if is_cofix then "co" else "") ++ str "fixpoint definition" let explain_non_linear_pattern id = str "The variable " ++ Id.print id ++ str " is bound several times in pattern" let explain_bad_patterns_number n1 n2 = str "Expecting " ++ int n1 ++ str (String.plural n1 " pattern") ++ str " but found " ++ int n2 let explain_internalization_error e = let pp = match e with | VariableCapture (id,id') -> explain_variable_capture id id' | IllegalMetavariable -> explain_illegal_metavariable | NotAConstructor ref -> explain_not_a_constructor ref | UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id | NonLinearPattern id -> explain_non_linear_pattern id | BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2 in pp ++ str "." let error_bad_inductive_type ?loc = user_err ?loc (str "This should be an inductive type applied to patterns.") let error_parameter_not_implicit ?loc = user_err ?loc (str "The parameters do not bind in patterns;" ++ spc () ++ str "they must be replaced by '_'.") let error_ldots_var ?loc = user_err ?loc (str "Special token " ++ Id.print ldots_var ++ str " is for use in the Notation command.") (**********************************************************************) (* Pre-computing the implicit arguments and arguments scopes needed *) (* for interpretation *) let parsing_explicit = ref false let empty_internalization_env = Id.Map.empty let compute_explicitable_implicit imps = function | Inductive (params,_) -> (* In inductive types, the parameters are fixed implicit arguments *) let sub_impl,_ = List.chop (List.length params) imps in let sub_impl' = List.filter is_status_implicit sub_impl in List.map name_of_implicit sub_impl' | Recursive | Method | Variable -> (* Unable to know in advance what the implicit arguments will be *) [] let compute_internalization_data env sigma ty typ impl = let impl = compute_implicits_with_manual env sigma typ (is_implicit_args()) impl in let expls_impl = compute_explicitable_implicit impl ty in (ty, expls_impl, impl, compute_arguments_scope sigma typ) let compute_internalization_env env sigma ?(impls=empty_internalization_env) ty = List.fold_left3 (fun map id typ impl -> Id.Map.add id (compute_internalization_data env sigma ty typ impl) map) impls (**********************************************************************) (* Contracting "{ _ }" in notations *) let rec wildcards ntn n = if Int.equal n (String.length ntn) then [] else let l = spaces ntn (n+1) in if ntn.[n] == '_' then n::l else l and spaces ntn n = if Int.equal n (String.length ntn) then [] else if ntn.[n] == ' ' then wildcards ntn (n+1) else spaces ntn (n+1) let expand_notation_string ntn n = let pos = List.nth (wildcards ntn 0) n in let hd = if Int.equal pos 0 then "" else String.sub ntn 0 pos in let tl = if Int.equal pos (String.length ntn) then "" else String.sub ntn (pos+1) (String.length ntn - pos -1) in hd ^ "{ _ }" ^ tl (* This contracts the special case of "{ _ }" for sumbool, sumor notations *) (* Remark: expansion of squash at definition is done in metasyntax.ml *) let contract_curly_brackets ntn (l,ll,bl,bll) = match ntn with | InCustomEntryLevel _,_ -> ntn,(l,ll,bl,bll) | InConstrEntrySomeLevel, ntn -> let ntn' = ref ntn in let rec contract_squash n = function | [] -> [] | { CAst.v = CNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[],[],[])) } :: l -> ntn' := expand_notation_string !ntn' n; contract_squash n (a::l) | a :: l -> a::contract_squash (n+1) l in let l = contract_squash 0 l in (* side effect; don't inline *) (InConstrEntrySomeLevel,!ntn'),(l,ll,bl,bll) let contract_curly_brackets_pat ntn (l,ll) = match ntn with | InCustomEntryLevel _,_ -> ntn,(l,ll) | InConstrEntrySomeLevel, ntn -> let ntn' = ref ntn in let rec contract_squash n = function | [] -> [] | { CAst.v = CPatNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[]),[]) } :: l -> ntn' := expand_notation_string !ntn' n; contract_squash n (a::l) | a :: l -> a::contract_squash (n+1) l in let l = contract_squash 0 l in (* side effect; don't inline *) (InConstrEntrySomeLevel,!ntn'),(l,ll) type intern_env = { ids: Names.Id.Set.t; unb: bool; tmp_scope: Notation_term.tmp_scope_name option; scopes: Notation_term.scope_name list; impls: internalization_env } (**********************************************************************) (* Remembering the parsing scope of variables in notations *) let make_current_scope tmp scopes = match tmp, scopes with | Some tmp_scope, (sc :: _) when String.equal sc tmp_scope -> scopes | Some tmp_scope, scopes -> tmp_scope :: scopes | None, scopes -> scopes let pr_scope_stack = function | [] -> str "the empty scope stack" | [a] -> str "scope " ++ str a | l -> str "scope stack " ++ str "[" ++ prlist_with_sep pr_comma str l ++ str "]" let error_inconsistent_scope ?loc id scopes1 scopes2 = user_err ?loc ~hdr:"set_var_scope" (Id.print id ++ str " is here used in " ++ pr_scope_stack scopes2 ++ strbrk " while it was elsewhere used in " ++ pr_scope_stack scopes1) let error_expect_binder_notation_type ?loc id = user_err ?loc (Id.print id ++ str " is expected to occur in binding position in the right-hand side.") let set_var_scope ?loc id istermvar (tmp_scope,subscopes as scopes) ntnvars = try let used_as_binder,idscopes,typ = Id.Map.find id ntnvars in if not istermvar then used_as_binder := true; let () = if istermvar then (* scopes have no effect on the interpretation of identifiers *) begin match !idscopes with | None -> idscopes := Some scopes | Some (tmp_scope', subscopes') -> let s' = make_current_scope tmp_scope' subscopes' in let s = make_current_scope tmp_scope subscopes in if not (List.equal String.equal s' s) then error_inconsistent_scope ?loc id s' s end in match typ with | Notation_term.NtnInternTypeOnlyBinder -> if istermvar then error_expect_binder_notation_type ?loc id | Notation_term.NtnInternTypeAny -> () with Not_found -> (* Not in a notation *) () let set_type_scope env = {env with tmp_scope = Notation.current_type_scope_name ()} let reset_tmp_scope env = {env with tmp_scope = None} let set_env_scopes env (scopt,subscopes) = {env with tmp_scope = scopt; scopes = subscopes @ env.scopes} let mkGProd ?loc (na,bk,t) body = DAst.make ?loc @@ GProd (na, bk, t, body) let mkGLambda ?loc (na,bk,t) body = DAst.make ?loc @@ GLambda (na, bk, t, body) (**********************************************************************) (* Utilities for binders *) let build_impls = function |Implicit -> (function |Name id -> Some (id, Impargs.Manual, (true,true)) |Anonymous -> Some (Id.of_string "_", Impargs.Manual, (true,true))) |Explicit -> fun _ -> None let impls_type_list ?(args = []) = let rec aux acc c = match DAst.get c with | GProd (na,bk,_,c) -> aux ((build_impls bk na)::acc) c | _ -> (Variable,[],List.append args (List.rev acc),[]) in aux [] let impls_term_list ?(args = []) = let rec aux acc c = match DAst.get c with | GLambda (na,bk,_,c) -> aux ((build_impls bk na)::acc) c | GRec (fix_kind, nas, args, tys, bds) -> let nb = match fix_kind with |GFix (_, n) -> n | GCoFix n -> n in let acc' = List.fold_left (fun a (na, bk, _, _) -> (build_impls bk na)::a) acc args.(nb) in aux acc' bds.(nb) |_ -> (Variable,[],List.append args (List.rev acc),[]) in aux [] (* Check if in binder "(x1 x2 .. xn : t)", none of x1 .. xn-1 occurs in t *) let rec check_capture ty = let open CAst in function | { loc; v = Name id } :: { v = Name id' } :: _ when occur_glob_constr id ty -> raise (InternalizationError (loc,VariableCapture (id,id'))) | _::nal -> check_capture ty nal | [] -> () let locate_if_hole ?loc na c = match DAst.get c with | GHole (_,naming,arg) -> (try match na with | Name id -> glob_constr_of_notation_constr ?loc (Reserve.find_reserved_type id) | Anonymous -> raise Not_found with Not_found -> DAst.make ?loc @@ GHole (Evar_kinds.BinderType na, naming, arg)) | _ -> c let reset_hidden_inductive_implicit_test env = { env with impls = Id.Map.map (function | (Inductive (params,_),b,c,d) -> (Inductive (params,false),b,c,d) | x -> x) env.impls } let check_hidden_implicit_parameters ?loc id impls = if Id.Map.exists (fun _ -> function | (Inductive (indparams,check),_,_,_) when check -> Id.List.mem id indparams | _ -> false) impls then user_err ?loc (Id.print id ++ strbrk " is already used as name of " ++ strbrk "a parameter of the inductive type; bound variables in " ++ strbrk "the type of a constructor shall use a different name.") let push_name_env ?(global_level=false) ntnvars implargs env = let open CAst in function | { loc; v = Anonymous } -> if global_level then user_err ?loc (str "Anonymous variables not allowed"); env | { loc; v = Name id } -> check_hidden_implicit_parameters ?loc id env.impls ; if Id.Map.is_empty ntnvars && Id.equal id ldots_var then error_ldots_var ?loc; set_var_scope ?loc id false (env.tmp_scope,env.scopes) ntnvars; if global_level then Dumpglob.dump_definition CAst.(make ?loc id) true "var" else Dumpglob.dump_binding ?loc id; {env with ids = Id.Set.add id env.ids; impls = Id.Map.add id implargs env.impls} let intern_generalized_binder ?(global_level=false) intern_type ntnvars env {loc;v=na} b b' t ty = let ids = (match na with Anonymous -> fun x -> x | Name na -> Id.Set.add na) env.ids in let ty, ids' = if t then ty, ids else Implicit_quantifiers.implicit_application ids Implicit_quantifiers.combine_params_freevar ty in let ty' = intern_type {env with ids = ids; unb = true} ty in let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:ids ~allowed:ids' ty' in let env' = List.fold_left (fun env {loc;v=x} -> push_name_env ~global_level ntnvars (Variable,[],[],[])(*?*) env (make ?loc @@ Name x)) env fvs in let bl = List.map CAst.(map (fun id -> (Name id, b, DAst.make ?loc @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None)))) fvs in let na = match na with | Anonymous -> if global_level then na else let name = let id = match ty with | { v = CApp ((_, { v = CRef (qid,_) } ), _) } when qualid_is_ident qid -> qualid_basename qid | _ -> default_non_dependent_ident in Implicit_quantifiers.make_fresh ids' (Global.env ()) id in Name name | _ -> na in (push_name_env ~global_level ntnvars (impls_type_list ty')(*?*) env' (make ?loc na)), (make ?loc (na,b',ty')) :: List.rev bl let intern_assumption intern ntnvars env nal bk ty = let intern_type env = intern (set_type_scope env) in match bk with | Default k -> let ty = intern_type env ty in check_capture ty nal; let impls = impls_type_list ty in List.fold_left (fun (env, bl) ({loc;v=na} as locna) -> (push_name_env ntnvars impls env locna, (make ?loc (na,k,locate_if_hole ?loc na ty))::bl)) (env, []) nal | Generalized (b,b',t) -> let env, b = intern_generalized_binder intern_type ntnvars env (List.hd nal) b b' t ty in env, b let glob_local_binder_of_extended = DAst.with_loc_val (fun ?loc -> function | GLocalAssum (na,bk,t) -> (na,bk,None,t) | GLocalDef (na,bk,c,Some t) -> (na,bk,Some c,t) | GLocalDef (na,bk,c,None) -> let t = DAst.make ?loc @@ GHole(Evar_kinds.BinderType na,IntroAnonymous,None) in (na,bk,Some c,t) | GLocalPattern (_,_,_,_) -> Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") ) let intern_cases_pattern_fwd = ref (fun _ -> failwith "intern_cases_pattern_fwd") let intern_letin_binder intern ntnvars env (({loc;v=na} as locna),def,ty) = let term = intern env def in let ty = Option.map (intern env) ty in (push_name_env ntnvars (impls_term_list term) env locna, (na,Explicit,term,ty)) let intern_cases_pattern_as_binder ?loc ntnvars env p = let il,disjpat = let (il, subst_disjpat) = !intern_cases_pattern_fwd ntnvars (None,env.scopes) p in let substl,disjpat = List.split subst_disjpat in if not (List.for_all (fun subst -> Id.Map.equal Id.equal subst Id.Map.empty) substl) then user_err ?loc (str "Unsupported nested \"as\" clause."); il,disjpat in let env = List.fold_right (fun {loc;v=id} env -> push_name_env ntnvars (Variable,[],[],[]) env (make ?loc @@ Name id)) il env in let na = alias_of_pat (List.hd disjpat) in let ienv = Name.fold_right Id.Set.remove na env.ids in let id = Namegen.next_name_away_with_default "pat" na ienv in let na = make ?loc @@ Name id in env,((disjpat,il),id),na let intern_local_binder_aux ?(global_level=false) intern ntnvars (env,bl) = function | CLocalAssum(nal,bk,ty) -> let env, bl' = intern_assumption intern ntnvars env nal bk ty in let bl' = List.map (fun {loc;v=(na,c,t)} -> DAst.make ?loc @@ GLocalAssum (na,c,t)) bl' in env, bl' @ bl | CLocalDef( {loc; v=na} as locna,def,ty) -> let env,(na,bk,def,ty) = intern_letin_binder intern ntnvars env (locna,def,ty) in env, (DAst.make ?loc @@ GLocalDef (na,bk,def,ty)) :: bl | CLocalPattern {loc;v=(p,ty)} -> let tyc = match ty with | Some ty -> ty | None -> CAst.make ?loc @@ CHole(None,IntroAnonymous,None) in let env, ((disjpat,il),id),na = intern_cases_pattern_as_binder ?loc ntnvars env p in let bk = Default Explicit in let _, bl' = intern_assumption intern ntnvars env [na] bk tyc in let {v=(_,bk,t)} = List.hd bl' in (env, (DAst.make ?loc @@ GLocalPattern((disjpat,List.map (fun x -> x.v) il),id,bk,t)) :: bl) let intern_generalization intern env ntnvars loc bk ak c = let c = intern {env with unb = true} c in let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:env.ids c in let env', c' = let abs = let pi = match ak with | Some AbsPi -> true | Some _ -> false | None -> match Notation.current_type_scope_name () with | Some type_scope -> let is_type_scope = match env.tmp_scope with | None -> false | Some sc -> String.equal sc type_scope in is_type_scope || String.List.mem type_scope env.scopes | None -> false in if pi then (fun {loc=loc';v=id} acc -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GProd (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc)) else (fun {loc=loc';v=id} acc -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GLambda (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc)) in List.fold_right (fun ({loc;v=id} as lid) (env, acc) -> let env' = push_name_env ntnvars (Variable,[],[],[]) env CAst.(make @@ Name id) in (env', abs lid acc)) fvs (env,c) in c' let rec expand_binders ?loc mk bl c = match bl with | [] -> c | b :: bl -> match DAst.get b with | GLocalDef (n, bk, b, oty) -> expand_binders ?loc mk bl (DAst.make ?loc @@ GLetIn (n, b, oty, c)) | GLocalAssum (n, bk, t) -> expand_binders ?loc mk bl (mk ?loc (n,bk,t) c) | GLocalPattern ((disjpat,ids), id, bk, ty) -> let tm = DAst.make ?loc (GVar id) in (* Distribute the disjunctive patterns over the shared right-hand side *) let eqnl = List.map (fun pat -> CAst.make ?loc (ids,[pat],c)) disjpat in let c = DAst.make ?loc @@ GCases (LetPatternStyle, None, [tm,(Anonymous,None)], eqnl) in expand_binders ?loc mk bl (mk ?loc (Name id,Explicit,ty) c) (**********************************************************************) (* Syntax extensions *) let option_mem_assoc id = function | Some (id',c) -> Id.equal id id' | None -> false let find_fresh_name renaming (terms,termlists,binders,binderlists) avoid id = let fold1 _ (c, _) accu = Id.Set.union (free_vars_of_constr_expr c) accu in let fold2 _ (l, _) accu = let fold accu c = Id.Set.union (free_vars_of_constr_expr c) accu in List.fold_left fold accu l in let fold3 _ x accu = Id.Set.add x accu in let fvs1 = Id.Map.fold fold1 terms avoid in let fvs2 = Id.Map.fold fold2 termlists fvs1 in let fvs3 = Id.Map.fold fold3 renaming fvs2 in (* TODO binders *) next_ident_away_from id (fun id -> Id.Set.mem id fvs3) let is_var store pat = match DAst.get pat with | PatVar na -> ignore(store na); true | _ -> false let out_var pat = match pat.v with | CPatAtom (Some qid) when qualid_is_ident qid -> Name (qualid_basename qid) | CPatAtom None -> Anonymous | _ -> assert false let term_of_name = function | Name id -> DAst.make (GVar id) | Anonymous -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in DAst.make (GHole (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st }, IntroAnonymous, None)) let traverse_binder intern_pat ntnvars (terms,_,binders,_ as subst) avoid (renaming,env) = function | Anonymous -> (renaming,env), None, Anonymous | Name id -> let store,get = set_temporary_memory () in try (* We instantiate binder name with patterns which may be parsed as terms *) let pat = coerce_to_cases_pattern_expr (fst (Id.Map.find id terms)) in let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in let pat, na = match disjpat with | [pat] when is_var store pat -> let na = get () in None, na | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in (renaming,env), pat, na with Not_found -> try (* Trying to associate a pattern *) let pat,(onlyident,scopes) = Id.Map.find id binders in let env = set_env_scopes env scopes in if onlyident then (* Do not try to interpret a variable as a constructor *) let na = out_var pat in let env = push_name_env ntnvars (Variable,[],[],[]) env (make ?loc:pat.loc na) in (renaming,env), None, na else (* Interpret as a pattern *) let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in let pat, na = match disjpat with | [pat] when is_var store pat -> let na = get () in None, na | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in (renaming,env), pat, na with Not_found -> (* Binders not bound in the notation do not capture variables *) (* outside the notation (i.e. in the substitution) *) let id' = find_fresh_name renaming subst avoid id in let renaming' = if Id.equal id id' then renaming else Id.Map.add id id' renaming in (renaming',env), None, Name id' type binder_action = | AddLetIn of lname * constr_expr * constr_expr option | AddTermIter of (constr_expr * subscopes) Names.Id.Map.t | AddPreBinderIter of Id.t * local_binder_expr (* A binder to be internalized *) | AddBinderIter of Id.t * extended_glob_local_binder (* A binder already internalized - used for generalized binders *) let dmap_with_loc f n = CAst.map_with_loc (fun ?loc c -> f ?loc (DAst.get_thunk c)) n let error_cannot_coerce_wildcard_term ?loc () = user_err ?loc Pp.(str "Cannot turn \"_\" into a term.") let error_cannot_coerce_disjunctive_pattern_term ?loc () = user_err ?loc Pp.(str "Cannot turn a disjunctive pattern into a term.") let terms_of_binders bl = let rec term_of_pat pt = dmap_with_loc (fun ?loc -> function | PatVar (Name id) -> CRef (qualid_of_ident id, None) | PatVar (Anonymous) -> error_cannot_coerce_wildcard_term ?loc () | PatCstr (c,l,_) -> let qid = qualid_of_path ?loc (path_of_global (ConstructRef c)) in let hole = CAst.make ?loc @@ CHole (None,IntroAnonymous,None) in let params = List.make (Inductiveops.inductive_nparams (fst c)) hole in CAppExpl ((None,qid,None),params @ List.map term_of_pat l)) pt in let rec extract_variables l = match l with | bnd :: l -> let loc = bnd.loc in begin match DAst.get bnd with | GLocalAssum (Name id,_,_) -> (CAst.make ?loc @@ CRef (qualid_of_ident ?loc id, None)) :: extract_variables l | GLocalDef (Name id,_,_,_) -> extract_variables l | GLocalDef (Anonymous,_,_,_) | GLocalAssum (Anonymous,_,_) -> user_err Pp.(str "Cannot turn \"_\" into a term.") | GLocalPattern (([u],_),_,_,_) -> term_of_pat u :: extract_variables l | GLocalPattern ((_,_),_,_,_) -> error_cannot_coerce_disjunctive_pattern_term ?loc () end | [] -> [] in extract_variables bl let flatten_generalized_binders_if_any y l = match List.rev l with | [] -> assert false | a::l -> a, List.map (fun a -> AddBinderIter (y,a)) l (* if l not empty, this means we had a generalized binder *) let flatten_binders bl = let dispatch = function | CLocalAssum (nal,bk,t) -> List.map (fun na -> CLocalAssum ([na],bk,t)) nal | a -> [a] in List.flatten (List.map dispatch bl) let instantiate_notation_constr loc intern intern_pat ntnvars subst infos c = let (terms,termlists,binders,binderlists) = subst in (* when called while defining a notation, avoid capturing the private binders of the expression by variables bound by the notation (see #3892) *) let avoid = Id.Map.domain ntnvars in let rec aux (terms,binderopt,iteropt as subst') (renaming,env) c = let subinfos = renaming,{env with tmp_scope = None} in match c with | NVar id when Id.equal id ldots_var -> let rec aux_letin env = function | [],terminator,_ -> aux (terms,None,None) (renaming,env) terminator | AddPreBinderIter (y,binder)::rest,terminator,iter -> let env,binders = intern_local_binder_aux intern ntnvars (env,[]) binder in let binder,extra = flatten_generalized_binders_if_any y binders in aux (terms,Some (y,binder),Some (extra@rest,terminator,iter)) (renaming,env) iter | AddBinderIter (y,binder)::rest,terminator,iter -> aux (terms,Some (y,binder),Some (rest,terminator,iter)) (renaming,env) iter | AddTermIter nterms::rest,terminator,iter -> aux (nterms,None,Some (rest,terminator,iter)) (renaming,env) iter | AddLetIn (na,c,t)::rest,terminator,iter -> let env,(na,_,c,t) = intern_letin_binder intern ntnvars env (na,c,t) in DAst.make ?loc (GLetIn (na,c,t,aux_letin env (rest,terminator,iter))) in aux_letin env (Option.get iteropt) | NVar id -> subst_var subst' (renaming, env) id | NList (x,y,iter,terminator,revert) -> let l,(scopt,subscopes) = (* All elements of the list are in scopes (scopt,subscopes) *) try let l,scopes = Id.Map.find x termlists in (if revert then List.rev l else l),scopes with Not_found -> try let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in let env,bl' = List.fold_left (intern_local_binder_aux intern ntnvars) (env,[]) bl in terms_of_binders (if revert then bl' else List.rev bl'),(None,[]) with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.") in let l = List.map (fun a -> AddTermIter ((Id.Map.add y (a,(scopt,subscopes)) terms))) l in aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var) | NHole (knd, naming, arg) -> let knd = match knd with | Evar_kinds.BinderType (Name id as na) -> let na = try (coerce_to_name (fst (Id.Map.find id terms))).v with Not_found -> try Name (Id.Map.find id renaming) with Not_found -> na in Evar_kinds.BinderType na | _ -> knd in let arg = match arg with | None -> None | Some arg -> let mk_env id (c, (tmp_scope, subscopes)) map = let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in try let gc = intern nenv c in Id.Map.add id (gc, Some c) map with GlobalizationError _ -> map in let mk_env' (c, (onlyident,(tmp_scope,subscopes))) = let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in if onlyident then let na = out_var c in term_of_name na, None else let _,((disjpat,_),_),_ = intern_pat ntnvars nenv c in match disjpat with | [pat] -> (glob_constr_of_cases_pattern pat, None) | _ -> error_cannot_coerce_disjunctive_pattern_term ?loc:c.loc () in let terms = Id.Map.fold mk_env terms Id.Map.empty in let binders = Id.Map.map mk_env' binders in let bindings = Id.Map.fold Id.Map.add terms binders in Some (Genintern.generic_substitute_notation bindings arg) in DAst.make ?loc @@ GHole (knd, naming, arg) | NBinderList (x,y,iter,terminator,revert) -> (try (* All elements of the list are in scopes (scopt,subscopes) *) let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in (* We flatten binders so that we can interpret them at substitution time *) let bl = flatten_binders bl in let bl = if revert then List.rev bl else bl in (* We isolate let-ins which do not contribute to the repeated pattern *) let l = List.map (function | CLocalDef (na,c,t) -> AddLetIn (na,c,t) | binder -> AddPreBinderIter (y,binder)) bl in (* We stack the binders to iterate or let-ins to insert *) aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var) with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.")) | NProd (Name id, NHole _, c') when option_mem_assoc id binderopt -> let binder = snd (Option.get binderopt) in expand_binders ?loc mkGProd [binder] (aux subst' (renaming,env) c') | NLambda (Name id,NHole _,c') when option_mem_assoc id binderopt -> let binder = snd (Option.get binderopt) in expand_binders ?loc mkGLambda [binder] (aux subst' (renaming,env) c') (* Two special cases to keep binder name synchronous with BinderType *) | NProd (na,NHole(Evar_kinds.BinderType na',naming,arg),c') when Name.equal na na' -> let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst avoid subinfos na in let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in DAst.make ?loc @@ GProd (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c')) | NLambda (na,NHole(Evar_kinds.BinderType na',naming,arg),c') when Name.equal na na' -> let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst avoid subinfos na in let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in DAst.make ?loc @@ GLambda (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c')) | t -> glob_constr_of_notation_constr_with_binders ?loc (traverse_binder intern_pat ntnvars subst avoid) (aux subst') subinfos t and subst_var (terms, binderopt, _terminopt) (renaming, env) id = (* subst remembers the delimiters stack in the interpretation *) (* of the notations *) try let (a,(scopt,subscopes)) = Id.Map.find id terms in intern {env with tmp_scope = scopt; scopes = subscopes @ env.scopes} a with Not_found -> try let pat,(onlyident,scopes) = Id.Map.find id binders in let env = set_env_scopes env scopes in (* We deactivate impls to avoid the check on hidden parameters *) (* and since we are only interested in the pattern as a term *) let env = reset_hidden_inductive_implicit_test env in if onlyident then term_of_name (out_var pat) else let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in match disjpat with | [pat] -> glob_constr_of_cases_pattern pat | _ -> user_err Pp.(str "Cannot turn a disjunctive pattern into a term.") with Not_found -> try match binderopt with | Some (x,binder) when Id.equal x id -> let terms = terms_of_binders [binder] in assert (List.length terms = 1); intern env (List.hd terms) | _ -> raise Not_found with Not_found -> DAst.make ?loc ( try GVar (Id.Map.find id renaming) with Not_found -> (* Happens for local notation joint with inductive/fixpoint defs *) GVar id) in aux (terms,None,None) infos c (* Turning substitution coming from parsing and based on production into a substitution for interpretation and based on binding/constr distinction *) let cases_pattern_of_name {loc;v=na} = let atom = match na with Name id -> Some (qualid_of_ident ?loc id) | Anonymous -> None in CAst.make ?loc (CPatAtom atom) let split_by_type ids subst = let bind id scl l s = match l with | [] -> assert false | a::l -> l, Id.Map.add id (a,scl) s in let (terms,termlists,binders,binderlists),subst = List.fold_left (fun ((terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')) (id,((_,scl),typ)) -> match typ with | NtnTypeConstr -> let terms,terms' = bind id scl terms terms' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder NtnBinderParsedAsConstr (AsIdentOrPattern | AsStrictPattern) -> let a,terms = match terms with a::terms -> a,terms | _ -> assert false in let binders' = Id.Map.add id (coerce_to_cases_pattern_expr a,(false,scl)) binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder NtnBinderParsedAsConstr AsIdent -> let a,terms = match terms with a::terms -> a,terms | _ -> assert false in let binders' = Id.Map.add id (cases_pattern_of_name (coerce_to_name a),(true,scl)) binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder (NtnParsedAsIdent | NtnParsedAsPattern _ as x) -> let onlyident = (x = NtnParsedAsIdent) in let binders,binders' = bind id (onlyident,scl) binders binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeConstrList -> let termlists,termlists' = bind id scl termlists termlists' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinderList -> let binderlists,binderlists' = bind id scl binderlists binderlists' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')) (subst,(Id.Map.empty,Id.Map.empty,Id.Map.empty,Id.Map.empty)) ids in assert (terms = [] && termlists = [] && binders = [] && binderlists = []); subst let split_by_type_pat ?loc ids subst = let bind id (_,scopes) l s = match l with | [] -> assert false | a::l -> l, Id.Map.add id (a,scopes) s in let (terms,termlists),subst = List.fold_left (fun ((terms,termlists),(terms',termlists')) (id,(scl,typ)) -> match typ with | NtnTypeConstr | NtnTypeBinder _ -> let terms,terms' = bind id scl terms terms' in (terms,termlists),(terms',termlists') | NtnTypeConstrList -> let termlists,termlists' = bind id scl termlists termlists' in (terms,termlists),(terms',termlists') | NtnTypeBinderList -> error_invalid_pattern_notation ?loc ()) (subst,(Id.Map.empty,Id.Map.empty)) ids in assert (terms = [] && termlists = []); subst let make_subst ids l = let fold accu (id, scopes) a = Id.Map.add id (a, scopes) accu in List.fold_left2 fold Id.Map.empty ids l let intern_notation intern env ntnvars loc ntn fullargs = (* Adjust to parsing of { } *) let ntn,fullargs = contract_curly_brackets ntn fullargs in (* Recover interpretation { } *) let ((ids,c),df) = interp_notation ?loc ntn (env.tmp_scope,env.scopes) in Dumpglob.dump_notation_location (ntn_loc ?loc fullargs ntn) ntn df; (* Dispatch parsing substitution to an interpretation substitution *) let subst = split_by_type ids fullargs in (* Instantiate the notation *) instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst (Id.Map.empty, env) c (**********************************************************************) (* Discriminating between bound variables and global references *) let string_of_ty = function | Inductive _ -> "ind" | Recursive -> "def" | Method -> "meth" | Variable -> "var" let gvar (loc, id) us = match us with | None -> DAst.make ?loc @@ GVar id | Some _ -> user_err ?loc (str "Variable " ++ Id.print id ++ str " cannot have a universe instance") let intern_var env (ltacvars,ntnvars) namedctx loc id us = (* Is [id] a notation variable *) if Id.Map.mem id ntnvars then begin if not (Id.Map.mem id env.impls) then set_var_scope ?loc id true (env.tmp_scope,env.scopes) ntnvars; gvar (loc,id) us, [], [], [] end else (* Is [id] registered with implicit arguments *) try let ty,expl_impls,impls,argsc = Id.Map.find id env.impls in let expl_impls = List.map (fun id -> CAst.make ?loc @@ CRef (qualid_of_ident ?loc id,None), Some (make ?loc @@ ExplByName id)) expl_impls in let tys = string_of_ty ty in Dumpglob.dump_reference ?loc "<>" (Id.to_string id) tys; gvar (loc,id) us, make_implicits_list impls, argsc, expl_impls with Not_found -> (* Is [id] bound in current term or is an ltac var bound to constr *) if Id.Set.mem id env.ids || Id.Set.mem id ltacvars.ltac_vars then gvar (loc,id) us, [], [], [] else if Id.equal id ldots_var (* Is [id] the special variable for recursive notations? *) then if Id.Map.is_empty ntnvars then error_ldots_var ?loc else gvar (loc,id) us, [], [], [] else if Id.Set.mem id ltacvars.ltac_bound then (* Is [id] bound to a free name in ltac (this is an ltac error message) *) user_err ?loc ~hdr:"intern_var" (str "variable " ++ Id.print id ++ str " should be bound to a term.") else (* Is [id] a goal or section variable *) let _ = Context.Named.lookup id namedctx in try (* [id] a section variable *) (* Redundant: could be done in intern_qualid *) let ref = VarRef id in let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in Dumpglob.dump_reference ?loc "<>" (string_of_qualid (Decls.variable_secpath id)) "var"; DAst.make ?loc @@ GRef (ref, us), impls, scopes, [] with e when CErrors.noncritical e -> (* [id] a goal variable *) gvar (loc,id) us, [], [], [] let find_appl_head_data c = match DAst.get c with | GRef (ref,_) -> let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in c, impls, scopes, [] | GApp (r, l) -> begin match DAst.get r with | GRef (ref,_) when l != [] -> let n = List.length l in let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in c, List.map (drop_first_implicits n) impls, List.skipn_at_least n scopes,[] | _ -> c,[],[],[] end | _ -> c,[],[],[] let error_not_enough_arguments ?loc = user_err ?loc (str "Abbreviation is not applied enough.") let check_no_explicitation l = let is_unset (a, b) = match b with None -> false | Some _ -> true in let l = List.filter is_unset l in match l with | [] -> () | (_, None) :: _ -> assert false | (_, Some {loc}) :: _ -> user_err ?loc (str"Unexpected explicitation of the argument of an abbreviation.") let dump_extended_global loc = function | TrueGlobal ref -> (*feedback_global loc ref;*) Dumpglob.add_glob ?loc ref | SynDef sp -> Dumpglob.add_glob_kn ?loc sp let intern_extended_global_of_qualid qid = let r = Nametab.locate_extended qid in dump_extended_global qid.CAst.loc r; r let intern_reference qid = let r = try intern_extended_global_of_qualid qid with Not_found -> error_global_not_found qid in Smartlocate.global_of_extended_global r let sort_info_of_level_info (info: level_info) : (Libnames.qualid * int) option = match info with | UAnonymous -> None | UUnknown -> None | UNamed id -> Some (id, 0) let glob_sort_of_level (level: glob_level) : glob_sort = match level with | GProp -> GProp | GSet -> GSet | GType info -> GType [sort_info_of_level_info info] (* Is it a global reference or a syntactic definition? *) let intern_qualid ?(no_secvar=false) qid intern env ntnvars us args = let loc = qid.loc in match intern_extended_global_of_qualid qid with | TrueGlobal (VarRef _) when no_secvar -> (* Rule out section vars since these should have been found by intern_var *) raise Not_found | TrueGlobal ref -> (DAst.make ?loc @@ GRef (ref, us)), true, args | SynDef sp -> let (ids,c) = Syntax_def.search_syntactic_definition ?loc sp in let nids = List.length ids in if List.length args < nids then error_not_enough_arguments ?loc; let args1,args2 = List.chop nids args in check_no_explicitation args1; let terms = make_subst ids (List.map fst args1) in let subst = (terms, Id.Map.empty, Id.Map.empty, Id.Map.empty) in let infos = (Id.Map.empty, env) in let projapp = match c with NRef _ -> true | _ -> false in let c = instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst infos c in let loc = c.loc in let err () = user_err ?loc (str "Notation " ++ pr_qualid qid ++ str " cannot have a universe instance," ++ str " its expanded head does not start with a reference") in let c = match us, DAst.get c with | None, _ -> c | Some _, GRef (ref, None) -> DAst.make ?loc @@ GRef (ref, us) | Some _, GApp (r, arg) -> let loc' = r.CAst.loc in begin match DAst.get r with | GRef (ref, None) -> DAst.make ?loc @@ GApp (DAst.make ?loc:loc' @@ GRef (ref, us), arg) | _ -> err () end | Some [s], GSort (GType []) -> DAst.make ?loc @@ GSort (glob_sort_of_level s) | Some [_old_level], GSort _new_sort -> (* TODO: add old_level and new_sort to the error message *) user_err ?loc (str "Cannot change universe level of notation " ++ pr_qualid qid) | Some _, _ -> err () in c, projapp, args2 let intern_applied_reference intern env namedctx (_, ntnvars as lvar) us args qid = let loc = qid.CAst.loc in if qualid_is_ident qid then try intern_var env lvar namedctx loc (qualid_basename qid) us, args with Not_found -> try let r, projapp, args2 = intern_qualid ~no_secvar:true qid intern env ntnvars us args in let x, imp, scopes, l = find_appl_head_data r in (x,imp,scopes,l), args2 with Not_found -> (* Extra allowance for non globalizing functions *) if !interning_grammar || env.unb then (gvar (loc,qualid_basename qid) us, [], [], []), args else error_global_not_found qid else let r,projapp,args2 = try intern_qualid qid intern env ntnvars us args with Not_found -> error_global_not_found qid in let x, imp, scopes, l = find_appl_head_data r in (x,imp,scopes,l), args2 let interp_reference vars r = let (r,_,_,_),_ = intern_applied_reference (fun _ -> error_not_enough_arguments ?loc:None) {ids = Id.Set.empty; unb = false ; tmp_scope = None; scopes = []; impls = empty_internalization_env} [] (vars, Id.Map.empty) None [] r in r (**********************************************************************) (** {5 Cases } *) (** Private internalization patterns *) type 'a raw_cases_pattern_expr_r = | RCPatAlias of 'a raw_cases_pattern_expr * lname | RCPatCstr of GlobRef.t * 'a raw_cases_pattern_expr list * 'a raw_cases_pattern_expr list (** [RCPatCstr (loc, c, l1, l2)] represents [((@ c l1) l2)] *) | RCPatAtom of (lident * (Notation_term.tmp_scope_name option * Notation_term.scope_name list)) option | RCPatOr of 'a raw_cases_pattern_expr list and 'a raw_cases_pattern_expr = ('a raw_cases_pattern_expr_r, 'a) DAst.t (** {6 Elementary bricks } *) let apply_scope_env env = function | [] -> {env with tmp_scope = None}, [] | sc::scl -> {env with tmp_scope = sc}, scl let rec simple_adjust_scopes n scopes = (* Note: they can be less scopes than arguments but also more scopes *) (* than arguments because extra scopes are used in the presence of *) (* coercions to funclass *) if Int.equal n 0 then [] else match scopes with | [] -> None :: simple_adjust_scopes (n-1) [] | sc::scopes -> sc :: simple_adjust_scopes (n-1) scopes let find_remaining_scopes pl1 pl2 ref = let impls_st = implicits_of_global ref in let len_pl1 = List.length pl1 in let len_pl2 = List.length pl2 in let impl_list = if Int.equal len_pl1 0 then select_impargs_size len_pl2 impls_st else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in let allscs = find_arguments_scope ref in let scope_list = List.skipn_at_least len_pl1 allscs in let rec aux = function |[],l -> l |_,[] -> [] |h::t,_::tt when is_status_implicit h -> aux (t,tt) |_::t,h::tt -> h :: aux (t,tt) in ((try List.firstn len_pl1 allscs with Failure _ -> simple_adjust_scopes len_pl1 allscs), simple_adjust_scopes len_pl2 (aux (impl_list,scope_list))) (* @return the first variable that occurs twice in a pattern naive n^2 algo *) let rec has_duplicate = function | [] -> None | x::l -> if Id.List.mem x l then (Some x) else has_duplicate l let loc_of_multiple_pattern pl = Loc.merge_opt (cases_pattern_expr_loc (List.hd pl)) (cases_pattern_expr_loc (List.last pl)) let loc_of_lhs lhs = Loc.merge_opt (loc_of_multiple_pattern (List.hd lhs)) (loc_of_multiple_pattern (List.last lhs)) let check_linearity lhs ids = match has_duplicate ids with | Some id -> raise (InternalizationError (loc_of_lhs lhs,NonLinearPattern id)) | None -> () (* Match the number of pattern against the number of matched args *) let check_number_of_pattern loc n l = let p = List.length l in if not (Int.equal n p) then raise (InternalizationError (loc,BadPatternsNumber (n,p))) let check_or_pat_variables loc ids idsl = let eq_id {v=id} {v=id'} = Id.equal id id' in (* Collect remaining patterns which do not have the same variables as the first pattern *) let idsl = List.filter (fun ids' -> not (List.eq_set eq_id ids ids')) idsl in match idsl with | ids'::_ -> (* Look for an [id] which is either in [ids] and not in [ids'] or in [ids'] and not in [ids] *) let ids'' = List.subtract eq_id ids ids' in let ids'' = if ids'' = [] then List.subtract eq_id ids' ids else ids'' in user_err ?loc (strbrk "The components of this disjunctive pattern must bind the same variables (" ++ Id.print (List.hd ids'').v ++ strbrk " is not bound in all patterns).") | [] -> () (** Use only when params were NOT asked to the user. @return if letin are included *) let check_constructor_length env loc cstr len_pl pl0 = let n = len_pl + List.length pl0 in if Int.equal n (Inductiveops.constructor_nallargs cstr) then false else (Int.equal n (Inductiveops.constructor_nalldecls cstr) || (error_wrong_numarg_constructor ?loc env cstr (Inductiveops.constructor_nrealargs cstr))) open Term open Declarations (* Similar to Cases.adjust_local_defs but on RCPat *) let insert_local_defs_in_pattern (ind,j) l = let (mib,mip) = Global.lookup_inductive ind in if mip.mind_consnrealdecls.(j-1) = mip.mind_consnrealargs.(j-1) then (* Optimisation *) l else let typi = mip.mind_nf_lc.(j-1) in let (_,typi) = decompose_prod_n_assum (Context.Rel.length mib.mind_params_ctxt) typi in let (decls,_) = decompose_prod_assum typi in let rec aux decls args = match decls, args with | Context.Rel.Declaration.LocalDef _ :: decls, args -> (DAst.make @@ RCPatAtom None) :: aux decls args | _, [] -> [] (* In particular, if there were trailing local defs, they have been inserted *) | Context.Rel.Declaration.LocalAssum _ :: decls, a :: args -> a :: aux decls args | _ -> assert false in aux (List.rev decls) l let add_local_defs_and_check_length loc env g pl args = match g with | ConstructRef cstr -> (* We consider that no variables corresponding to local binders have been given in the "explicit" arguments, which come from a "@C args" notation or from a custom user notation *) let pl' = insert_local_defs_in_pattern cstr pl in let maxargs = Inductiveops.constructor_nalldecls cstr in if List.length pl' + List.length args > maxargs then error_wrong_numarg_constructor ?loc env cstr (Inductiveops.constructor_nrealargs cstr); (* Two possibilities: either the args are given with explict variables for local definitions, then we give the explicit args extended with local defs, so that there is nothing more to be added later on; or the args are not enough to have all arguments, which a priori means local defs to add in the [args] part, so we postpone the insertion of local defs in the explicit args *) (* Note: further checks done later by check_constructor_length *) if List.length pl' + List.length args = maxargs then pl' else pl | _ -> pl let add_implicits_check_length fail nargs nargs_with_letin impls_st len_pl1 pl2 = let impl_list = if Int.equal len_pl1 0 then select_impargs_size (List.length pl2) impls_st else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in let remaining_args = List.fold_left (fun i x -> if is_status_implicit x then i else succ i) in let rec aux i = function |[],l -> let args_len = List.length l + List.length impl_list + len_pl1 in ((if Int.equal args_len nargs then false else Int.equal args_len nargs_with_letin || (fst (fail (nargs - List.length impl_list + i)))) ,l) |imp::q as il,[] -> if is_status_implicit imp && maximal_insertion_of imp then let (b,out) = aux i (q,[]) in (b,(DAst.make @@ RCPatAtom None)::out) else fail (remaining_args (len_pl1+i) il) |imp::q,(hh::tt as l) -> if is_status_implicit imp then let (b,out) = aux i (q,l) in (b,(DAst.make @@ RCPatAtom None)::out) else let (b,out) = aux (succ i) (q,tt) in (b,hh::out) in aux 0 (impl_list,pl2) let add_implicits_check_constructor_length env loc c len_pl1 pl2 = let nargs = Inductiveops.constructor_nallargs c in let nargs' = Inductiveops.constructor_nalldecls c in let impls_st = implicits_of_global (ConstructRef c) in add_implicits_check_length (error_wrong_numarg_constructor ?loc env c) nargs nargs' impls_st len_pl1 pl2 let add_implicits_check_ind_length env loc c len_pl1 pl2 = let nallargs = inductive_nallargs_env env c in let nalldecls = inductive_nalldecls_env env c in let impls_st = implicits_of_global (IndRef c) in add_implicits_check_length (error_wrong_numarg_inductive ?loc env c) nallargs nalldecls impls_st len_pl1 pl2 (** Do not raise NotEnoughArguments thanks to preconditions*) let chop_params_pattern loc ind args with_letin = let nparams = if with_letin then Inductiveops.inductive_nparamdecls ind else Inductiveops.inductive_nparams ind in assert (nparams <= List.length args); let params,args = List.chop nparams args in List.iter (fun c -> match DAst.get c with | PatVar Anonymous -> () | PatVar _ | PatCstr(_,_,_) -> error_parameter_not_implicit ?loc:c.CAst.loc) params; args let find_constructor loc add_params ref = let (ind,_ as cstr) = match ref with | ConstructRef cstr -> cstr | IndRef _ -> let error = str "There is an inductive name deep in a \"in\" clause." in user_err ?loc ~hdr:"find_constructor" error | ConstRef _ | VarRef _ -> let error = str "This reference is not a constructor." in user_err ?loc ~hdr:"find_constructor" error in cstr, match add_params with | Some nb_args -> let nb = if Int.equal nb_args (Inductiveops.constructor_nrealdecls cstr) then Inductiveops.inductive_nparamdecls ind else Inductiveops.inductive_nparams ind in List.make nb ([], [(Id.Map.empty, DAst.make @@ PatVar Anonymous)]) | None -> [] let find_pattern_variable qid = if qualid_is_ident qid then qualid_basename qid else raise (InternalizationError(qid.CAst.loc,NotAConstructor qid)) let check_duplicate loc fields = let eq (ref1, _) (ref2, _) = qualid_eq ref1 ref2 in let dups = List.duplicates eq fields in match dups with | [] -> () | (r, _) :: _ -> user_err ?loc (str "This record defines several times the field " ++ pr_qualid r ++ str ".") (** [sort_fields ~complete loc fields completer] expects a list [fields] of field assignments [f = e1; g = e2; ...], where [f, g] are fields of a record and [e1] are "values" (either terms, when interning a record construction, or patterns, when intering record pattern-matching). It will sort the fields according to the record declaration order (which is important when type-checking them in presence of dependencies between fields). If the parameter [complete] is true, we require the assignment to be complete: all the fields of the record must be present in the assignment. Otherwise the record assignment may be partial (in a pattern, we may match on some fields only), and we call the function [completer] to fill the missing fields; the returned field assignment list is always complete. *) let sort_fields ~complete loc fields completer = match fields with | [] -> None | (first_field_ref, first_field_value):: other_fields -> let (first_field_glob_ref, record) = try let gr = global_reference_of_reference first_field_ref in (gr, Recordops.find_projection gr) with Not_found -> user_err ?loc ~hdr:"intern" (pr_qualid first_field_ref ++ str": Not a projection") in (* the number of parameters *) let nparams = record.Recordops.s_EXPECTEDPARAM in (* the reference constructor of the record *) let base_constructor = let global_record_id = ConstructRef record.Recordops.s_CONST in try shortest_qualid_of_global ?loc Id.Set.empty global_record_id with Not_found -> anomaly (str "Environment corruption for records.") in let () = check_duplicate loc fields in let (end_index, (* one past the last field index *) first_field_index, (* index of the first field of the record *) proj_list) (* list of projections *) = (* eliminate the first field from the projections, but keep its index *) let rec build_proj_list projs proj_kinds idx ~acc_first_idx acc = match projs with | [] -> (idx, acc_first_idx, acc) | (Some field_glob_id) :: projs -> let field_glob_ref = ConstRef field_glob_id in let first_field = GlobRef.equal field_glob_ref first_field_glob_ref in begin match proj_kinds with | [] -> anomaly (Pp.str "Number of projections mismatch.") | (_, regular) :: proj_kinds -> (* "regular" is false when the field is defined by a let-in in the record declaration (its value is fixed from other fields). *) if first_field && not regular && complete then user_err ?loc (str "No local fields allowed in a record construction.") else if first_field then build_proj_list projs proj_kinds (idx+1) ~acc_first_idx:idx acc else if not regular && complete then (* skip non-regular fields *) build_proj_list projs proj_kinds idx ~acc_first_idx acc else build_proj_list projs proj_kinds (idx+1) ~acc_first_idx ((idx, field_glob_id) :: acc) end | None :: projs -> if complete then (* we don't want anonymous fields *) user_err ?loc (str "This record contains anonymous fields.") else (* anonymous arguments don't appear in proj_kinds *) build_proj_list projs proj_kinds (idx+1) ~acc_first_idx acc in build_proj_list record.Recordops.s_PROJ record.Recordops.s_PROJKIND 1 ~acc_first_idx:0 [] in (* now we want to have all fields assignments indexed by their place in the constructor *) let rec index_fields fields remaining_projs acc = match fields with | (field_ref, field_value) :: fields -> let field_glob_ref = try global_reference_of_reference field_ref with Not_found -> user_err ?loc ~hdr:"intern" (str "The field \"" ++ pr_qualid field_ref ++ str "\" does not exist.") in let remaining_projs, (field_index, _) = let the_proj (idx, glob_id) = GlobRef.equal field_glob_ref (ConstRef glob_id) in try CList.extract_first the_proj remaining_projs with Not_found -> user_err ?loc (str "This record contains fields of different records.") in index_fields fields remaining_projs ((field_index, field_value) :: acc) | [] -> (* the order does not matter as we sort them next, List.rev_* is just for efficiency *) let remaining_fields = let complete_field (idx, field_ref) = (idx, completer idx field_ref record.Recordops.s_CONST) in List.rev_map complete_field remaining_projs in List.rev_append remaining_fields acc in let unsorted_indexed_fields = index_fields other_fields proj_list [(first_field_index, first_field_value)] in let sorted_indexed_fields = let cmp_by_index (i, _) (j, _) = Int.compare i j in List.sort cmp_by_index unsorted_indexed_fields in let sorted_fields = List.map snd sorted_indexed_fields in Some (nparams, base_constructor, sorted_fields) (** {6 Manage multiple aliases} *) type alias = { alias_ids : lident list; alias_map : Id.t Id.Map.t; } let empty_alias = { alias_ids = []; alias_map = Id.Map.empty; } (* [merge_aliases] returns the sets of all aliases encountered at this point and a substitution mapping extra aliases to the first one *) let merge_aliases aliases {loc;v=na} = match na with | Anonymous -> aliases | Name id -> let alias_ids = aliases.alias_ids @ [make ?loc id] in let alias_map = match aliases.alias_ids with | [] -> aliases.alias_map | {v=id'} :: _ -> Id.Map.add id id' aliases.alias_map in { alias_ids; alias_map; } let alias_of als = match als.alias_ids with | [] -> Anonymous | {v=id} :: _ -> Name id (** {6 Expanding notations } @returns a raw_case_pattern_expr : - no notations and syntactic definition - global reference and identifeir instead of reference *) let is_zero s = let rec aux i = Int.equal (String.length s) i || (s.[i] == '0' && aux (i+1)) in aux 0 let merge_subst s1 s2 = Id.Map.fold Id.Map.add s1 s2 let product_of_cases_patterns aliases idspl = (* each [pl] is a disjunction of patterns over common identifiers [ids] *) (* We stepwise build a disjunction of patterns [ptaill] over common [ids'] *) List.fold_right (fun (ids,pl) (ids',ptaill) -> (ids @ ids', (* Cartesian prod of the or-pats for the nth arg and the tail args *) List.flatten ( List.map (fun (subst,p) -> List.map (fun (subst',ptail) -> (merge_subst subst subst',p::ptail)) ptaill) pl))) idspl (aliases.alias_ids,[aliases.alias_map,[]]) let rec subst_pat_iterator y t = DAst.(map (function | RCPatAtom id as p -> begin match id with Some ({v=x},_) when Id.equal x y -> DAst.get t | _ -> p end | RCPatCstr (id,l1,l2) -> RCPatCstr (id,List.map (subst_pat_iterator y t) l1, List.map (subst_pat_iterator y t) l2) | RCPatAlias (p,a) -> RCPatAlias (subst_pat_iterator y t p,a) | RCPatOr pl -> RCPatOr (List.map (subst_pat_iterator y t) pl))) let is_non_zero c = match c with | { CAst.v = CPrim (Numeral (p, true)) } -> not (is_zero p) | _ -> false let is_non_zero_pat c = match c with | { CAst.v = CPatPrim (Numeral (p, true)) } -> not (is_zero p) | _ -> false let drop_notations_pattern looked_for genv = (* At toplevel, Constructors and Inductives are accepted, in recursive calls only constructor are allowed *) let ensure_kind top loc g = try if top then looked_for g else match g with ConstructRef _ -> () | _ -> raise Not_found with Not_found -> error_invalid_pattern_notation ?loc () in let test_kind top = if top then looked_for else function ConstructRef _ -> () | _ -> raise Not_found in (** [rcp_of_glob] : from [glob_constr] to [raw_cases_pattern_expr] *) let rec rcp_of_glob scopes x = DAst.(map (function | GVar id -> RCPatAtom (Some (CAst.make ?loc:x.loc id,scopes)) | GHole (_,_,_) -> RCPatAtom (None) | GRef (g,_) -> RCPatCstr (g,[],[]) | GApp (r, l) -> begin match DAst.get r with | GRef (g,_) -> let allscs = find_arguments_scope g in let allscs = simple_adjust_scopes (List.length l) allscs in (* TO CHECK *) RCPatCstr (g, List.map2 (fun sc a -> rcp_of_glob (sc,snd scopes) a) allscs l,[]) | _ -> CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr.") end | _ -> CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr."))) x in let rec drop_syndef top scopes qid pats = try match locate_extended qid with | SynDef sp -> let (vars,a) = Syntax_def.search_syntactic_definition sp in (match a with | NRef g -> (* Convention: do not deactivate implicit arguments and scopes for further arguments *) test_kind top g; let () = assert (List.is_empty vars) in let (_,argscs) = find_remaining_scopes [] pats g in Some (g, [], List.map2 (in_pat_sc scopes) argscs pats) | NApp (NRef g,[]) -> (* special case: Syndef for @Cstr, this deactivates *) test_kind top g; let () = assert (List.is_empty vars) in Some (g, List.map (in_pat false scopes) pats, []) | NApp (NRef g,args) -> (* Convention: do not deactivate implicit arguments and scopes for further arguments *) test_kind top g; let nvars = List.length vars in if List.length pats < nvars then error_not_enough_arguments ?loc:qid.loc; let pats1,pats2 = List.chop nvars pats in let subst = make_subst vars pats1 in let idspl1 = List.map (in_not false qid.loc scopes (subst, Id.Map.empty) []) args in let (_,argscs) = find_remaining_scopes pats1 pats2 g in Some (g, idspl1, List.map2 (in_pat_sc scopes) argscs pats2) | _ -> raise Not_found) | TrueGlobal g -> test_kind top g; Dumpglob.add_glob ?loc:qid.loc g; let (_,argscs) = find_remaining_scopes [] pats g in Some (g,[],List.map2 (fun x -> in_pat false (x,snd scopes)) argscs pats) with Not_found -> None and in_pat top scopes pt = let open CAst in let loc = pt.loc in match pt.v with | CPatAlias (p, id) -> DAst.make ?loc @@ RCPatAlias (in_pat top scopes p, id) | CPatRecord l -> let sorted_fields = sort_fields ~complete:false loc l (fun _idx fieldname constructor -> CAst.make ?loc @@ CPatAtom None) in begin match sorted_fields with | None -> DAst.make ?loc @@ RCPatAtom None | Some (n, head, pl) -> let pl = if !asymmetric_patterns then pl else let pars = List.make n (CAst.make ?loc @@ CPatAtom None) in List.rev_append pars pl in match drop_syndef top scopes head pl with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c) | None -> raise (InternalizationError (loc,NotAConstructor head)) end | CPatCstr (head, None, pl) -> begin match drop_syndef top scopes head pl with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c) | None -> raise (InternalizationError (loc,NotAConstructor head)) end | CPatCstr (qid, Some expl_pl, pl) -> let g = try locate qid with Not_found -> raise (InternalizationError (loc,NotAConstructor qid)) in if expl_pl == [] then (* Convention: (@r) deactivates all further implicit arguments and scopes *) DAst.make ?loc @@ RCPatCstr (g, List.map (in_pat false scopes) pl, []) else (* Convention: (@r expl_pl) deactivates implicit arguments in expl_pl and in pl *) (* but not scopes in expl_pl *) let (argscs1,_) = find_remaining_scopes expl_pl pl g in DAst.make ?loc @@ RCPatCstr (g, List.map2 (in_pat_sc scopes) argscs1 expl_pl @ List.map (in_pat false scopes) pl, []) | CPatNotation ((InConstrEntrySomeLevel,"- _"),([a],[]),[]) when is_non_zero_pat a -> let p = match a.CAst.v with CPatPrim (Numeral (p, _)) -> p | _ -> assert false in let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (ensure_kind false loc) (Numeral (p,false)) scopes in rcp_of_glob scopes pat | CPatNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[]),[]) -> in_pat top scopes a | CPatNotation (ntn,fullargs,extrargs) -> let ntn,(terms,termlists) = contract_curly_brackets_pat ntn fullargs in let ((ids',c),df) = Notation.interp_notation ?loc ntn scopes in let (terms,termlists) = split_by_type_pat ?loc ids' (terms,termlists) in Dumpglob.dump_notation_location (patntn_loc ?loc fullargs ntn) ntn df; in_not top loc scopes (terms,termlists) extrargs c | CPatDelimiters (key, e) -> in_pat top (None,find_delimiters_scope ?loc key::snd scopes) e | CPatPrim p -> let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (test_kind false) p scopes in rcp_of_glob scopes pat | CPatAtom (Some id) -> begin match drop_syndef top scopes id [] with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr (a, b, c) | None -> DAst.make ?loc @@ RCPatAtom (Some ((make ?loc @@ find_pattern_variable id),scopes)) end | CPatAtom None -> DAst.make ?loc @@ RCPatAtom None | CPatOr pl -> DAst.make ?loc @@ RCPatOr (List.map (in_pat top scopes) pl) | CPatCast (_,_) -> (* We raise an error if the pattern contains a cast, due to current restrictions on casts in patterns. Cast in patterns are supportted only in local binders and only at top level. In fact, they are currently eliminated by the parser. The only reason why they are in the [cases_pattern_expr] type is that the parser needs to factor the "(c : t)" notation with user defined notations (such as the pair). In the long term, we will try to support such casts everywhere, and use them to print the domains of lambdas in the encoding of match in constr. This check is here and not in the parser because it would require duplicating the levels of the [pattern] rule. *) CErrors.user_err ?loc ~hdr:"drop_notations_pattern" (Pp.strbrk "Casts are not supported in this pattern.") and in_pat_sc scopes x = in_pat false (x,snd scopes) and in_not top loc scopes (subst,substlist as fullsubst) args = function | NVar id -> let () = assert (List.is_empty args) in begin (* subst remembers the delimiters stack in the interpretation *) (* of the notations *) try let (a,(scopt,subscopes)) = Id.Map.find id subst in in_pat top (scopt,subscopes@snd scopes) a with Not_found -> if Id.equal id ldots_var then DAst.make ?loc @@ RCPatAtom (Some ((make ?loc id),scopes)) else anomaly (str "Unbound pattern notation variable: " ++ Id.print id ++ str ".") end | NRef g -> ensure_kind top loc g; let (_,argscs) = find_remaining_scopes [] args g in DAst.make ?loc @@ RCPatCstr (g, [], List.map2 (in_pat_sc scopes) argscs args) | NApp (NRef g,pl) -> ensure_kind top loc g; let (argscs1,argscs2) = find_remaining_scopes pl args g in let pl = List.map2 (fun x -> in_not false loc (x,snd scopes) fullsubst []) argscs1 pl in let pl = add_local_defs_and_check_length loc genv g pl args in DAst.make ?loc @@ RCPatCstr (g, pl @ List.map (in_pat false scopes) args, []) | NList (x,y,iter,terminator,revert) -> if not (List.is_empty args) then user_err ?loc (strbrk "Application of arguments to a recursive notation not supported in patterns."); (try (* All elements of the list are in scopes (scopt,subscopes) *) let (l,(scopt,subscopes)) = Id.Map.find x substlist in let termin = in_not top loc scopes fullsubst [] terminator in List.fold_right (fun a t -> let nsubst = Id.Map.add y (a, (scopt, subscopes)) subst in let u = in_not false loc scopes (nsubst, substlist) [] iter in subst_pat_iterator ldots_var t u) (if revert then List.rev l else l) termin with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.")) | NHole _ -> let () = assert (List.is_empty args) in DAst.make ?loc @@ RCPatAtom None | t -> error_invalid_pattern_notation ?loc () in in_pat true let rec intern_pat genv ntnvars aliases pat = let intern_cstr_with_all_args loc c with_letin idslpl1 pl2 = let idslpl2 = List.map (intern_pat genv ntnvars empty_alias) pl2 in let (ids',pll) = product_of_cases_patterns aliases (idslpl1@idslpl2) in let pl' = List.map (fun (asubst,pl) -> (asubst, DAst.make ?loc @@ PatCstr (c,chop_params_pattern loc (fst c) pl with_letin,alias_of aliases))) pll in ids',pl' in let loc = pat.loc in match DAst.get pat with | RCPatAlias (p, id) -> let aliases' = merge_aliases aliases id in intern_pat genv ntnvars aliases' p | RCPatCstr (head, expl_pl, pl) -> if !asymmetric_patterns then let len = if List.is_empty expl_pl then Some (List.length pl) else None in let c,idslpl1 = find_constructor loc len head in let with_letin = check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl) else let c,idslpl1 = find_constructor loc None head in let with_letin, pl2 = add_implicits_check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl2) | RCPatAtom (Some ({loc;v=id},scopes)) -> let aliases = merge_aliases aliases (make ?loc @@ Name id) in set_var_scope ?loc id false scopes ntnvars; (aliases.alias_ids,[aliases.alias_map, DAst.make ?loc @@ PatVar (alias_of aliases)]) (* TO CHECK: aura-t-on id? *) | RCPatAtom (None) -> let { alias_ids = ids; alias_map = asubst; } = aliases in (ids, [asubst, DAst.make ?loc @@ PatVar (alias_of aliases)]) | RCPatOr pl -> assert (not (List.is_empty pl)); let pl' = List.map (intern_pat genv ntnvars aliases) pl in let (idsl,pl') = List.split pl' in let ids = List.hd idsl in check_or_pat_variables loc ids (List.tl idsl); (ids,List.flatten pl') let intern_cases_pattern genv ntnvars scopes aliases pat = intern_pat genv ntnvars aliases (drop_notations_pattern (function ConstructRef _ -> () | _ -> raise Not_found) genv scopes pat) let _ = intern_cases_pattern_fwd := fun ntnvars scopes p -> intern_cases_pattern (Global.env ()) ntnvars scopes empty_alias p let intern_ind_pattern genv ntnvars scopes pat = let no_not = try drop_notations_pattern (function (IndRef _ | ConstructRef _) -> () | _ -> raise Not_found) genv scopes pat with InternalizationError(loc,NotAConstructor _) -> error_bad_inductive_type ?loc in let loc = no_not.CAst.loc in match DAst.get no_not with | RCPatCstr (head, expl_pl, pl) -> let c = (function IndRef ind -> ind | _ -> error_bad_inductive_type ?loc) head in let with_letin, pl2 = add_implicits_check_ind_length genv loc c (List.length expl_pl) pl in let idslpl = List.map (intern_pat genv ntnvars empty_alias) (expl_pl@pl2) in (with_letin, match product_of_cases_patterns empty_alias idslpl with | _,[_,pl] -> (c,chop_params_pattern loc c pl with_letin) | _ -> error_bad_inductive_type ?loc) | x -> error_bad_inductive_type ?loc (**********************************************************************) (* Utilities for application *) let merge_impargs l args = let test x = function | (_, Some {v=y}) -> explicitation_eq x y | _ -> false in List.fold_right (fun a l -> match a with | (_, Some {v=ExplByName id as x}) when List.exists (test x) args -> l | _ -> a::l) l args let get_implicit_name n imps = Some (Impargs.name_of_implicit (List.nth imps (n-1))) let set_hole_implicit i b c = let loc = c.CAst.loc in match DAst.get c with | GRef (r, _) -> Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None) | GApp (r, _) -> let loc = r.CAst.loc in begin match DAst.get r with | GRef (r, _) -> Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None) | _ -> anomaly (Pp.str "Only refs have implicits.") end | GVar id -> Loc.tag ?loc (Evar_kinds.ImplicitArg (VarRef id,i,b),IntroAnonymous,None) | _ -> anomaly (Pp.str "Only refs have implicits.") let exists_implicit_name id = List.exists (fun imp -> is_status_implicit imp && Id.equal id (name_of_implicit imp)) let extract_explicit_arg imps args = let rec aux = function | [] -> Id.Map.empty, [] | (a,e)::l -> let (eargs,rargs) = aux l in match e with | None -> (eargs,a::rargs) | Some {loc;v=pos} -> let id = match pos with | ExplByName id -> if not (exists_implicit_name id imps) then user_err ?loc (str "Wrong argument name: " ++ Id.print id ++ str "."); if Id.Map.mem id eargs then user_err ?loc (str "Argument name " ++ Id.print id ++ str " occurs more than once."); id | ExplByPos (p,_id) -> let id = try let imp = List.nth imps (p-1) in if not (is_status_implicit imp) then failwith "imp"; name_of_implicit imp with Failure _ (* "nth" | "imp" *) -> user_err ?loc (str"Wrong argument position: " ++ int p ++ str ".") in if Id.Map.mem id eargs then user_err ?loc (str"Argument at position " ++ int p ++ str " is mentioned more than once."); id in (Id.Map.add id (loc, a) eargs, rargs) in aux args (**********************************************************************) (* Main loop *) let internalize globalenv env pattern_mode (_, ntnvars as lvar) c = let rec intern env = CAst.with_loc_val (fun ?loc -> function | CRef (ref,us) -> let (c,imp,subscopes,l),_ = intern_applied_reference intern env (Environ.named_context globalenv) lvar us [] ref in apply_impargs c env imp subscopes l loc | CFix ({ CAst.loc = locid; v = iddef}, dl) -> let lf = List.map (fun ({CAst.v = id},_,_,_,_) -> id) dl in let dl = Array.of_list dl in let n = try List.index0 Id.equal iddef lf with Not_found -> raise (InternalizationError (locid,UnboundFixName (false,iddef))) in let idl_temp = Array.map (fun (id,(n,order),bl,ty,_) -> let intern_ro_arg f = let before, after = split_at_annot bl n in let (env',rbefore) = List.fold_left intern_local_binder (env,[]) before in let ro = f (intern env') in let n' = Option.map (fun _ -> List.count (fun c -> match DAst.get c with | GLocalAssum _ -> true | _ -> false (* remove let-ins *)) rbefore) n in n', ro, List.fold_left intern_local_binder (env',rbefore) after in let n, ro, (env',rbl) = match order with | CStructRec -> intern_ro_arg (fun _ -> GStructRec) | CWfRec c -> intern_ro_arg (fun f -> GWfRec (f c)) | CMeasureRec (m,r) -> intern_ro_arg (fun f -> GMeasureRec (f m, Option.map f r)) in let bl = List.rev (List.map glob_local_binder_of_extended rbl) in ((n, ro), bl, intern_type env' ty, env')) dl in let idl = Array.map2 (fun (_,_,_,_,bd) (a,b,c,env') -> let env'' = List.fold_left_i (fun i en name -> let (_,bli,tyi,_) = idl_temp.(i) in let fix_args = (List.map (fun (na, bk, _, _) -> (build_impls bk na)) bli) in push_name_env ntnvars (impls_type_list ~args:fix_args tyi) en (CAst.make @@ Name name)) 0 env' lf in (a,b,c,intern {env'' with tmp_scope = None} bd)) dl idl_temp in DAst.make ?loc @@ GRec (GFix (Array.map (fun (ro,_,_,_) -> ro) idl,n), Array.of_list lf, Array.map (fun (_,bl,_,_) -> bl) idl, Array.map (fun (_,_,ty,_) -> ty) idl, Array.map (fun (_,_,_,bd) -> bd) idl) | CCoFix ({ CAst.loc = locid; v = iddef }, dl) -> let lf = List.map (fun ({CAst.v = id},_,_,_) -> id) dl in let dl = Array.of_list dl in let n = try List.index0 Id.equal iddef lf with Not_found -> raise (InternalizationError (locid,UnboundFixName (true,iddef))) in let idl_tmp = Array.map (fun ({ CAst.loc; v = id },bl,ty,_) -> let (env',rbl) = List.fold_left intern_local_binder (env,[]) bl in (List.rev (List.map glob_local_binder_of_extended rbl), intern_type env' ty,env')) dl in let idl = Array.map2 (fun (_,_,_,bd) (b,c,env') -> let env'' = List.fold_left_i (fun i en name -> let (bli,tyi,_) = idl_tmp.(i) in let cofix_args = List.map (fun (na, bk, _, _) -> (build_impls bk na)) bli in push_name_env ntnvars (impls_type_list ~args:cofix_args tyi) en (CAst.make @@ Name name)) 0 env' lf in (b,c,intern {env'' with tmp_scope = None} bd)) dl idl_tmp in DAst.make ?loc @@ GRec (GCoFix n, Array.of_list lf, Array.map (fun (bl,_,_) -> bl) idl, Array.map (fun (_,ty,_) -> ty) idl, Array.map (fun (_,_,bd) -> bd) idl) | CProdN (bl,c2) -> let (env',bl) = List.fold_left intern_local_binder (env,[]) bl in expand_binders ?loc mkGProd bl (intern_type env' c2) | CLambdaN ([],c2) -> (* Such a term is built sometimes: it should not change scope *) intern env c2 | CLambdaN (bl,c2) -> let (env',bl) = List.fold_left intern_local_binder (reset_tmp_scope env,[]) bl in expand_binders ?loc mkGLambda bl (intern env' c2) | CLetIn (na,c1,t,c2) -> let inc1 = intern (reset_tmp_scope env) c1 in let int = Option.map (intern_type env) t in DAst.make ?loc @@ GLetIn (na.CAst.v, inc1, int, intern (push_name_env ntnvars (impls_term_list inc1) env na) c2) | CNotation ((InConstrEntrySomeLevel,"- _"), ([a],[],[],[])) when is_non_zero a -> let p = match a.CAst.v with CPrim (Numeral (p, _)) -> p | _ -> assert false in intern env (CAst.make ?loc @@ CPrim (Numeral (p,false))) | CNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[],[],[])) -> intern env a | CNotation (ntn,args) -> intern_notation intern env ntnvars loc ntn args | CGeneralization (b,a,c) -> intern_generalization intern env ntnvars loc b a c | CPrim p -> fst (Notation.interp_prim_token ?loc p (env.tmp_scope,env.scopes)) | CDelimiters (key, e) -> intern {env with tmp_scope = None; scopes = find_delimiters_scope ?loc key :: env.scopes} e | CAppExpl ((isproj,ref,us), args) -> let (f,_,args_scopes,_),args = let args = List.map (fun a -> (a,None)) args in intern_applied_reference intern env (Environ.named_context globalenv) lvar us args ref in (* Rem: GApp(_,f,[]) stands for @f *) if args = [] then DAst.make ?loc @@ GApp (f,[]) else smart_gapp f loc (intern_args env args_scopes (List.map fst args)) | CApp ((isproj,f), args) -> let f,args = match f.CAst.v with (* Compact notations like "t.(f args') args" *) | CApp ((Some _,f), args') when not (Option.has_some isproj) -> f,args'@args (* Don't compact "(f args') args" to resolve implicits separately *) | _ -> f,args in let (c,impargs,args_scopes,l),args = match f.CAst.v with | CRef (ref,us) -> intern_applied_reference intern env (Environ.named_context globalenv) lvar us args ref | CNotation (ntn,([],[],[],[])) -> let c = intern_notation intern env ntnvars loc ntn ([],[],[],[]) in let x, impl, scopes, l = find_appl_head_data c in (x,impl,scopes,l), args | _ -> (intern env f,[],[],[]), args in apply_impargs c env impargs args_scopes (merge_impargs l args) loc | CRecord fs -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in let fields = sort_fields ~complete:true loc fs (fun _idx fieldname constructorname -> let open Evar_kinds in let fieldinfo : Evar_kinds.record_field = {fieldname=fieldname; recordname=inductive_of_constructor constructorname} in CAst.make ?loc @@ CHole (Some (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st; Evar_kinds.qm_record_field=Some fieldinfo }) , IntroAnonymous, None)) in begin match fields with | None -> user_err ?loc ~hdr:"intern" (str"No constructor inference.") | Some (n, constrname, args) -> let pars = List.make n (CAst.make ?loc @@ CHole (None, IntroAnonymous, None)) in let app = CAst.make ?loc @@ CAppExpl ((None, constrname,None), List.rev_append pars args) in intern env app end | CCases (sty, rtnpo, tms, eqns) -> let as_in_vars = List.fold_left (fun acc (_,na,inb) -> Option.fold_left (fun acc tt -> Id.Set.union (ids_of_cases_indtype tt) acc) (Option.fold_left (fun acc { CAst.v = y } -> Name.fold_right Id.Set.add y acc) acc na) inb) Id.Set.empty tms in (* as, in & return vars *) let forbidden_vars = Option.cata free_vars_of_constr_expr as_in_vars rtnpo in let tms,ex_ids,match_from_in = List.fold_right (fun citm (inds,ex_ids,matchs) -> let ((tm,ind),extra_id,match_td) = intern_case_item env forbidden_vars citm in (tm,ind)::inds, Option.fold_right Id.Set.add extra_id ex_ids, List.rev_append match_td matchs) tms ([],Id.Set.empty,[]) in let env' = Id.Set.fold (fun var bli -> push_name_env ntnvars (Variable,[],[],[]) bli (CAst.make @@ Name var)) (Id.Set.union ex_ids as_in_vars) (reset_hidden_inductive_implicit_test env) in (* PatVars before a real pattern do not need to be matched *) let stripped_match_from_in = let is_patvar c = match DAst.get c with | PatVar _ -> true | _ -> false in let rec aux = function | [] -> [] | (_, c) :: q when is_patvar c -> aux q | l -> l in aux match_from_in in let rtnpo = match stripped_match_from_in with | [] -> Option.map (intern_type env') rtnpo (* Only PatVar in "in" clauses *) | l -> (* Build a return predicate by expansion of the patterns of the "in" clause *) let thevars, thepats = List.split l in let sub_rtn = (* Some (GSort (Loc.ghost,GType None)) *) None in let sub_tms = List.map (fun id -> (DAst.make @@ GVar id),(Name id,None)) thevars (* "match v1,..,vn" *) in let main_sub_eqn = CAst.make @@ ([],thepats, (* "|p1,..,pn" *) Option.cata (intern_type env') (DAst.make ?loc @@ GHole(Evar_kinds.CasesType false,IntroAnonymous,None)) rtnpo) (* "=> P" if there were a return predicate P, and "=> _" otherwise *) in let catch_all_sub_eqn = if List.for_all (irrefutable globalenv) thepats then [] else [CAst.make @@ ([],List.make (List.length thepats) (DAst.make @@ PatVar Anonymous), (* "|_,..,_" *) DAst.make @@ GHole(Evar_kinds.ImpossibleCase,IntroAnonymous,None))] (* "=> _" *) in Some (DAst.make @@ GCases(RegularStyle,sub_rtn,sub_tms,main_sub_eqn::catch_all_sub_eqn)) in let eqns' = List.map (intern_eqn (List.length tms) env) eqns in DAst.make ?loc @@ GCases (sty, rtnpo, tms, List.flatten eqns') | CLetTuple (nal, (na,po), b, c) -> let env' = reset_tmp_scope env in (* "in" is None so no match to add *) let ((b',(na',_)),_,_) = intern_case_item env' Id.Set.empty (b,na,None) in let p' = Option.map (fun u -> let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env') (CAst.make na') in intern_type env'' u) po in DAst.make ?loc @@ GLetTuple (List.map (fun { CAst.v } -> v) nal, (na', p'), b', intern (List.fold_left (push_name_env ntnvars (Variable,[],[],[])) (reset_hidden_inductive_implicit_test env) nal) c) | CIf (c, (na,po), b1, b2) -> let env' = reset_tmp_scope env in let ((c',(na',_)),_,_) = intern_case_item env' Id.Set.empty (c,na,None) in (* no "in" no match to ad too *) let p' = Option.map (fun p -> let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env) (CAst.make na') in intern_type env'' p) po in DAst.make ?loc @@ GIf (c', (na', p'), intern env b1, intern env b2) | CHole (k, naming, solve) -> let k = match k with | None -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in (match naming with | IntroIdentifier id -> Evar_kinds.NamedHole id | _ -> Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st; }) | Some k -> k in let solve = match solve with | None -> None | Some gen -> let (ltacvars, ntnvars) = lvar in (* Preventively declare notation variables in ltac as non-bindings *) Id.Map.iter (fun x (used_as_binder,_,_) -> used_as_binder := false) ntnvars; let ntnvars = Id.Map.domain ntnvars in let extra = ltacvars.ltac_extra in let lvars = Id.Set.union ltacvars.ltac_bound ltacvars.ltac_vars in let lvars = Id.Set.union lvars ntnvars in let ltacvars = Id.Set.union lvars env.ids in let ist = { Genintern.genv = globalenv; ltacvars; extra; } in let (_, glb) = Genintern.generic_intern ist gen in Some glb in DAst.make ?loc @@ GHole (k, naming, solve) (* Parsing pattern variables *) | CPatVar n when pattern_mode -> DAst.make ?loc @@ GPatVar (Evar_kinds.SecondOrderPatVar n) | CEvar (n, []) when pattern_mode -> DAst.make ?loc @@ GPatVar (Evar_kinds.FirstOrderPatVar n) (* end *) (* Parsing existential variables *) | CEvar (n, l) -> DAst.make ?loc @@ GEvar (n, List.map (on_snd (intern env)) l) | CPatVar _ -> raise (InternalizationError (loc,IllegalMetavariable)) (* end *) | CSort s -> DAst.make ?loc @@ GSort s | CCast (c1, c2) -> DAst.make ?loc @@ GCast (intern env c1, map_cast_type (intern_type env) c2) ) and intern_type env = intern (set_type_scope env) and intern_local_binder env bind : intern_env * Glob_term.extended_glob_local_binder list = intern_local_binder_aux intern ntnvars env bind (* Expands a multiple pattern into a disjunction of multiple patterns *) and intern_multiple_pattern env n pl = let idsl_pll = List.map (intern_cases_pattern globalenv ntnvars (None,env.scopes) empty_alias) pl in let loc = loc_of_multiple_pattern pl in check_number_of_pattern loc n pl; product_of_cases_patterns empty_alias idsl_pll (* Expands a disjunction of multiple pattern *) and intern_disjunctive_multiple_pattern env loc n mpl = assert (not (List.is_empty mpl)); let mpl' = List.map (intern_multiple_pattern env n) mpl in let (idsl,mpl') = List.split mpl' in let ids = List.hd idsl in check_or_pat_variables loc ids (List.tl idsl); (ids,List.flatten mpl') (* Expands a pattern-matching clause [lhs => rhs] *) and intern_eqn n env {loc;v=(lhs,rhs)} = let eqn_ids,pll = intern_disjunctive_multiple_pattern env loc n lhs in (* Linearity implies the order in ids is irrelevant *) let eqn_ids = List.map (fun x -> x.v) eqn_ids in check_linearity lhs eqn_ids; let env_ids = List.fold_right Id.Set.add eqn_ids env.ids in List.map (fun (asubst,pl) -> let rhs = replace_vars_constr_expr asubst rhs in let rhs' = intern {env with ids = env_ids} rhs in CAst.make ?loc (eqn_ids,pl,rhs')) pll and intern_case_item env forbidden_names_for_gen (tm,na,t) = (* the "match" part *) let tm' = intern env tm in (* the "as" part *) let extra_id,na = let loc = tm'.CAst.loc in match DAst.get tm', na with | GVar id, None when not (Id.Map.mem id (snd lvar)) -> Some id, CAst.make ?loc @@ Name id | GRef (VarRef id, _), None -> Some id, CAst.make ?loc @@ Name id | _, None -> None, CAst.make Anonymous | _, Some ({ CAst.loc; v = na } as lna) -> None, lna in (* the "in" part *) let match_td,typ = match t with | Some t -> let with_letin,(ind,l) = intern_ind_pattern globalenv ntnvars (None,env.scopes) t in let (mib,mip) = Inductive.lookup_mind_specif globalenv ind in let nparams = (List.length (mib.Declarations.mind_params_ctxt)) in (* for "in Vect n", we answer (["n","n"],[(loc,"n")]) for "in Vect (S n)", we answer ((match over "m", relevant branch is "S n"), abstract over "m") = ([("m","S n")],[(loc,"m")]) where "m" is generated from the canonical name of the inductive and outside of {forbidden_names_for_gen} *) let (match_to_do,nal) = let rec canonize_args case_rel_ctxt arg_pats forbidden_names match_acc var_acc = let add_name l = function | { CAst.v = Anonymous } -> l | { CAst.loc; v = (Name y as x) } -> (y, DAst.make ?loc @@ PatVar x) :: l in match case_rel_ctxt,arg_pats with (* LetIn in the rel_context *) | LocalDef _ :: t, l when not with_letin -> canonize_args t l forbidden_names match_acc ((CAst.make Anonymous)::var_acc) | [],[] -> (add_name match_acc na, var_acc) | (LocalAssum (cano_name,ty) | LocalDef (cano_name,_,ty)) :: t, c::tt -> begin match DAst.get c with | PatVar x -> let loc = c.CAst.loc in canonize_args t tt forbidden_names (add_name match_acc CAst.(make ?loc x)) (CAst.make ?loc x::var_acc) | _ -> let fresh = Namegen.next_name_away_with_default_using_types "iV" cano_name forbidden_names (EConstr.of_constr ty) in canonize_args t tt (Id.Set.add fresh forbidden_names) ((fresh,c)::match_acc) ((CAst.make ?loc:(cases_pattern_loc c) @@ Name fresh)::var_acc) end | _ -> assert false in let _,args_rel = List.chop nparams (List.rev mip.Declarations.mind_arity_ctxt) in canonize_args args_rel l forbidden_names_for_gen [] [] in match_to_do, Some (CAst.make ?loc:(cases_pattern_expr_loc t) (ind,List.rev_map (fun x -> x.v) nal)) | None -> [], None in (tm',(na.CAst.v, typ)), extra_id, match_td and intern_impargs c env l subscopes args = let eargs, rargs = extract_explicit_arg l args in if !parsing_explicit then if Id.Map.is_empty eargs then intern_args env subscopes rargs else user_err Pp.(str "Arguments given by name or position not supported in explicit mode.") else let rec aux n impl subscopes eargs rargs = let (enva,subscopes') = apply_scope_env env subscopes in match (impl,rargs) with | (imp::impl', rargs) when is_status_implicit imp -> begin try let id = name_of_implicit imp in let (_,a) = Id.Map.find id eargs in let eargs' = Id.Map.remove id eargs in intern enva a :: aux (n+1) impl' subscopes' eargs' rargs with Not_found -> if List.is_empty rargs && Id.Map.is_empty eargs && not (maximal_insertion_of imp) then (* Less regular arguments than expected: complete *) (* with implicit arguments if maximal insertion is set *) [] else (DAst.map_from_loc (fun ?loc (a,b,c) -> GHole(a,b,c)) (set_hole_implicit (n,get_implicit_name n l) (force_inference_of imp) c) ) :: aux (n+1) impl' subscopes' eargs rargs end | (imp::impl', a::rargs') -> intern enva a :: aux (n+1) impl' subscopes' eargs rargs' | (imp::impl', []) -> if not (Id.Map.is_empty eargs) then (let (id,(loc,_)) = Id.Map.choose eargs in user_err ?loc (str "Not enough non implicit \ arguments to accept the argument bound to " ++ Id.print id ++ str".")); [] | ([], rargs) -> assert (Id.Map.is_empty eargs); intern_args env subscopes rargs in aux 1 l subscopes eargs rargs and apply_impargs c env imp subscopes l loc = let imp = select_impargs_size (List.length (List.filter (fun (_,x) -> x == None) l)) imp in let l = intern_impargs c env imp subscopes l in smart_gapp c loc l and smart_gapp f loc = function | [] -> f | l -> let loc' = f.CAst.loc in match DAst.get f with | GApp (g, args) -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GApp (g, args@l) | _ -> DAst.make ?loc:(Loc.merge_opt (loc_of_glob_constr f) loc) @@ GApp (f, l) and intern_args env subscopes = function | [] -> [] | a::args -> let (enva,subscopes) = apply_scope_env env subscopes in (intern enva a) :: (intern_args env subscopes args) in try intern env c with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) (**************************************************************************) (* Functions to translate constr_expr into glob_constr *) (**************************************************************************) let extract_ids env = List.fold_right Id.Set.add (Termops.ids_of_rel_context (Environ.rel_context env)) Id.Set.empty let scope_of_type_kind sigma = function | IsType -> Notation.current_type_scope_name () | OfType typ -> compute_type_scope sigma typ | WithoutTypeConstraint -> None let empty_ltac_sign = { ltac_vars = Id.Set.empty; ltac_bound = Id.Set.empty; ltac_extra = Genintern.Store.empty; } let intern_gen kind env sigma ?(impls=empty_internalization_env) ?(pattern_mode=false) ?(ltacvars=empty_ltac_sign) c = let tmp_scope = scope_of_type_kind sigma kind in internalize env {ids = extract_ids env; unb = false; tmp_scope = tmp_scope; scopes = []; impls = impls} pattern_mode (ltacvars, Id.Map.empty) c let intern_constr env sigma c = intern_gen WithoutTypeConstraint env sigma c let intern_type env sigma c = intern_gen IsType env sigma c let intern_pattern globalenv patt = try intern_cases_pattern globalenv Id.Map.empty (None,[]) empty_alias patt with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) (*********************************************************************) (* Functions to parse and interpret constructions *) (* All evars resolved *) let interp_gen kind env sigma ?(impls=empty_internalization_env) c = let c = intern_gen kind ~impls env sigma c in understand ~expected_type:kind env sigma c let interp_constr env sigma ?(impls=empty_internalization_env) c = interp_gen WithoutTypeConstraint env sigma c let interp_type env sigma ?(impls=empty_internalization_env) c = interp_gen IsType env sigma ~impls c let interp_casted_constr env sigma ?(impls=empty_internalization_env) c typ = interp_gen (OfType typ) env sigma ~impls c (* Not all evars expected to be resolved *) let interp_open_constr env sigma c = understand_tcc env sigma (intern_constr env sigma c) (* Not all evars expected to be resolved and computation of implicit args *) let interp_constr_evars_gen_impls env sigma ?(impls=empty_internalization_env) expected_type c = let c = intern_gen expected_type ~impls env sigma c in let imps = Implicit_quantifiers.implicits_of_glob_constr ~with_products:(expected_type == IsType) c in let sigma, c = understand_tcc env sigma ~expected_type c in sigma, (c, imps) let interp_constr_evars_impls env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen_impls env sigma ~impls WithoutTypeConstraint c let interp_casted_constr_evars_impls env evdref ?(impls=empty_internalization_env) c typ = interp_constr_evars_gen_impls env evdref ~impls (OfType typ) c let interp_type_evars_impls env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen_impls env sigma ~impls IsType c (* Not all evars expected to be resolved, with side-effect on evars *) let interp_constr_evars_gen env sigma ?(impls=empty_internalization_env) expected_type c = let c = intern_gen expected_type ~impls env sigma c in understand_tcc env sigma ~expected_type c let interp_constr_evars env evdref ?(impls=empty_internalization_env) c = interp_constr_evars_gen env evdref WithoutTypeConstraint ~impls c let interp_casted_constr_evars env sigma ?(impls=empty_internalization_env) c typ = interp_constr_evars_gen env sigma ~impls (OfType typ) c let interp_type_evars env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen env sigma IsType ~impls c (* Miscellaneous *) let intern_constr_pattern env sigma ?(as_type=false) ?(ltacvars=empty_ltac_sign) c = let c = intern_gen (if as_type then IsType else WithoutTypeConstraint) ~pattern_mode:true ~ltacvars env sigma c in pattern_of_glob_constr c let interp_notation_constr env ?(impls=empty_internalization_env) nenv a = (* [vl] is intended to remember the scope of the free variables of [a] *) let vl = Id.Map.map (fun typ -> (ref false, ref None, typ)) nenv.ninterp_var_type in let impls = Id.Map.fold (fun id _ impls -> Id.Map.remove id impls) nenv.ninterp_var_type impls in let c = internalize (Global.env()) {ids = extract_ids env; unb = false; tmp_scope = None; scopes = []; impls = impls} false (empty_ltac_sign, vl) a in (* Translate and check that [c] has all its free variables bound in [vars] *) let a, reversible = notation_constr_of_glob_constr nenv c in (* Splits variables into those that are binding, bound, or both *) (* binding and bound *) let out_scope = function None -> None,[] | Some (a,l) -> a,l in let unused = match reversible with NonInjective ids -> ids | _ -> [] in let vars = Id.Map.mapi (fun id (used_as_binder, sc, typ) -> (!used_as_binder && not (List.mem_f Id.equal id unused), out_scope !sc)) vl in (* Returns [a] and the ordered list of variables with their scopes *) vars, a, reversible (* Interpret binders and contexts *) let interp_binder env sigma na t = let t = intern_gen IsType env sigma t in let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in understand ~expected_type:IsType env sigma t' let interp_binder_evars env sigma na t = let t = intern_gen IsType env sigma t in let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in understand_tcc env sigma ~expected_type:IsType t' let my_intern_constr env lvar acc c = internalize env acc false lvar c let intern_context global_level env impl_env binders = try let lvar = (empty_ltac_sign, Id.Map.empty) in let lenv, bl = List.fold_left (fun (lenv, bl) b -> let (env, bl) = intern_local_binder_aux ~global_level (my_intern_constr env lvar) Id.Map.empty (lenv, bl) b in (env, bl)) ({ids = extract_ids env; unb = false; tmp_scope = None; scopes = []; impls = impl_env}, []) binders in (lenv.impls, List.map glob_local_binder_of_extended bl) with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) let interp_glob_context_evars env sigma k bl = let open EConstr in let env, sigma, par, _, impls = List.fold_left (fun (env,sigma,params,n,impls) (na, k, b, t) -> let t' = if Option.is_empty b then locate_if_hole ?loc:(loc_of_glob_constr t) na t else t in let sigma, t = understand_tcc env sigma ~expected_type:IsType t' in match b with None -> let d = LocalAssum (na,t) in let impls = if k == Implicit then let na = match na with Name n -> Some n | Anonymous -> None in (ExplByPos (n, na), (true, true, true)) :: impls else impls in (push_rel d env, sigma, d::params, succ n, impls) | Some b -> let sigma, c = understand_tcc env sigma ~expected_type:(OfType t) b in let d = LocalDef (na, c, t) in (push_rel d env, sigma, d::params, n, impls)) (env,sigma,[],k+1,[]) (List.rev bl) in sigma, ((env, par), impls) let interp_context_evars ?(global_level=false) ?(impl_env=empty_internalization_env) ?(shift=0) env sigma params = let int_env,bl = intern_context global_level env impl_env params in let sigma, x = interp_glob_context_evars env sigma shift bl in sigma, (int_env, x)