(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false let encode_record r = let indsp = global_inductive r in if not (is_record indsp) then user_err_loc (loc_of_reference r,"encode_record", str "This type is not a structure type."); indsp module PrintingRecordRecord = PrintingInductiveMake (struct let encode = encode_record let field = "Record" let title = "Types leading to pretty-printing using record notation: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using record notation" else " are not printed using record notation") end) module PrintingRecordConstructor = PrintingInductiveMake (struct let encode = encode_record let field = "Constructor" let title = "Types leading to pretty-printing using constructor form: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using constructor form" else " are not printed using constructor form") end) module PrintingRecord = Goptions.MakeRefTable(PrintingRecordRecord) module PrintingConstructor = Goptions.MakeRefTable(PrintingRecordConstructor) (**********************************************************************) (* Various externalisation functions *) let insert_delimiters e = function | None -> e | Some sc -> CDelimiters (dummy_loc,sc,e) let insert_pat_delimiters loc p = function | None -> p | Some sc -> CPatDelimiters (loc,sc,p) let insert_pat_alias loc p = function | Anonymous -> p | Name id -> CPatAlias (loc,p,id) (**********************************************************************) (* conversion of references *) let extern_evar loc n l = if !print_evar_arguments then CEvar (loc,n,l) else CEvar (loc,n,None) let debug_global_reference_printer = ref (fun _ -> failwith "Cannot print a global reference") let in_debugger = ref false let set_debug_global_reference_printer f = debug_global_reference_printer := f let extern_reference loc vars r = if !in_debugger then (* Debugger does not have the tables of global reference at hand *) !debug_global_reference_printer loc r else Qualid (loc,shortest_qualid_of_global vars r) (************************************************************************) (* Equality up to location (useful for translator v8) *) let rec check_same_pattern p1 p2 = match p1, p2 with | CPatAlias(_,a1,i1), CPatAlias(_,a2,i2) when i1=i2 -> check_same_pattern a1 a2 | CPatCstr(_,c1,a1), CPatCstr(_,c2,a2) when c1=c2 -> List.iter2 check_same_pattern a1 a2 | CPatCstrExpl(_,c1,a1), CPatCstrExpl(_,c2,a2) when c1=c2 -> List.iter2 check_same_pattern a1 a2 | CPatAtom(_,r1), CPatAtom(_,r2) when r1=r2 -> () | CPatPrim(_,i1), CPatPrim(_,i2) when i1=i2 -> () | CPatDelimiters(_,s1,e1), CPatDelimiters(_,s2,e2) when s1=s2 -> check_same_pattern e1 e2 | _ -> failwith "not same pattern" let check_same_ref r1 r2 = match r1,r2 with | Qualid(_,q1), Qualid(_,q2) when q1=q2 -> () | Ident(_,i1), Ident(_,i2) when i1=i2 -> () | _ -> failwith "not same ref" let rec check_same_type ty1 ty2 = match ty1, ty2 with | CRef r1, CRef r2 -> check_same_ref r1 r2 | CFix(_,(_,id1),fl1), CFix(_,(_,id2),fl2) when id1=id2 -> List.iter2 (fun (id1,i1,bl1,a1,b1) (id2,i2,bl2,a2,b2) -> if id1<>id2 || i1<>i2 then failwith "not same fix"; check_same_fix_binder bl1 bl2; check_same_type a1 a2; check_same_type b1 b2) fl1 fl2 | CCoFix(_,(_,id1),fl1), CCoFix(_,(_,id2),fl2) when id1=id2 -> List.iter2 (fun (id1,bl1,a1,b1) (id2,bl2,a2,b2) -> if id1<>id2 then failwith "not same fix"; check_same_fix_binder bl1 bl2; check_same_type a1 a2; check_same_type b1 b2) fl1 fl2 | CArrow(_,a1,b1), CArrow(_,a2,b2) -> check_same_type a1 a2; check_same_type b1 b2 | CProdN(_,bl1,a1), CProdN(_,bl2,a2) -> List.iter2 check_same_binder bl1 bl2; check_same_type a1 a2 | CLambdaN(_,bl1,a1), CLambdaN(_,bl2,a2) -> List.iter2 check_same_binder bl1 bl2; check_same_type a1 a2 | CLetIn(_,(_,na1),a1,b1), CLetIn(_,(_,na2),a2,b2) when na1=na2 -> check_same_type a1 a2; check_same_type b1 b2 | CAppExpl(_,(proj1,r1),al1), CAppExpl(_,(proj2,r2),al2) when proj1=proj2 -> check_same_ref r1 r2; List.iter2 check_same_type al1 al2 | CApp(_,(_,e1),al1), CApp(_,(_,e2),al2) -> check_same_type e1 e2; List.iter2 (fun (a1,e1) (a2,e2) -> if e1<>e2 then failwith "not same expl"; check_same_type a1 a2) al1 al2 | CCases(_,_,_,a1,brl1), CCases(_,_,_,a2,brl2) -> List.iter2 (fun (tm1,_) (tm2,_) -> check_same_type tm1 tm2) a1 a2; List.iter2 (fun (_,pl1,r1) (_,pl2,r2) -> List.iter2 (located_iter2 (List.iter2 check_same_pattern)) pl1 pl2; check_same_type r1 r2) brl1 brl2 | CHole _, CHole _ -> () | CPatVar(_,i1), CPatVar(_,i2) when i1=i2 -> () | CSort(_,s1), CSort(_,s2) when s1=s2 -> () | CCast(_,a1,CastConv (_,b1)), CCast(_,a2, CastConv(_,b2)) -> check_same_type a1 a2; check_same_type b1 b2 | CCast(_,a1,CastCoerce), CCast(_,a2, CastCoerce) -> check_same_type a1 a2 | CNotation(_,n1,(e1,el1,bl1)), CNotation(_,n2,(e2,el2,bl2)) when n1=n2 -> List.iter2 check_same_type e1 e2; List.iter2 (List.iter2 check_same_type) el1 el2; List.iter2 check_same_fix_binder bl1 bl2 | CPrim(_,i1), CPrim(_,i2) when i1=i2 -> () | CDelimiters(_,s1,e1), CDelimiters(_,s2,e2) when s1=s2 -> check_same_type e1 e2 | _ when ty1=ty2 -> () | _ -> failwith "not same type" and check_same_binder (nal1,_,e1) (nal2,_,e2) = List.iter2 (fun (_,na1) (_,na2) -> if na1<>na2 then failwith "not same name") nal1 nal2; check_same_type e1 e2 and check_same_fix_binder bl1 bl2 = List.iter2 (fun b1 b2 -> match b1,b2 with LocalRawAssum(nal1,k,ty1), LocalRawAssum(nal2,k',ty2) -> check_same_binder (nal1,k,ty1) (nal2,k',ty2) | LocalRawDef(na1,def1), LocalRawDef(na2,def2) -> check_same_binder ([na1],default_binder_kind,def1) ([na2],default_binder_kind,def2) | _ -> failwith "not same binder") bl1 bl2 let is_same_type c d = try let () = check_same_type c d in true with Failure _ -> false (**********************************************************************) (* mapping patterns to cases_pattern_expr *) let has_curly_brackets ntn = String.length ntn >= 6 & (String.sub ntn 0 6 = "{ _ } " or String.sub ntn (String.length ntn - 6) 6 = " { _ }" or string_string_contains ~where:ntn ~what:" { _ } ") let rec wildcards ntn n = if n = String.length ntn then [] else let l = spaces ntn (n+1) in if ntn.[n] = '_' then n::l else l and spaces ntn n = if n = String.length ntn then [] else if ntn.[n] = ' ' then wildcards ntn (n+1) else spaces ntn (n+1) let expand_curly_brackets loc mknot ntn l = let ntn' = ref ntn in let rec expand_ntn i = function | [] -> [] | a::l -> let a' = let p = List.nth (wildcards !ntn' 0) i - 2 in if p>=0 & p+5 <= String.length !ntn' & String.sub !ntn' p 5 = "{ _ }" then begin ntn' := String.sub !ntn' 0 p ^ "_" ^ String.sub !ntn' (p+5) (String.length !ntn' -p-5); mknot (loc,"{ _ }",[a]) end else a in a' :: expand_ntn (i+1) l in let l = expand_ntn 0 l in (* side effect *) mknot (loc,!ntn',l) let destPrim = function CPrim(_,t) -> Some t | _ -> None let destPatPrim = function CPatPrim(_,t) -> Some t | _ -> None let make_notation_gen loc ntn mknot mkprim destprim l = if has_curly_brackets ntn then expand_curly_brackets loc mknot ntn l else match ntn,List.map destprim l with (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *) | "- _", [Some (Numeral p)] when Bigint.is_strictly_pos p -> mknot (loc,ntn,([mknot (loc,"( _ )",l)])) | _ -> match decompose_notation_key ntn, l with | [Terminal "-"; Terminal x], [] -> (try mkprim (loc, Numeral (Bigint.neg (Bigint.of_string x))) with _ -> mknot (loc,ntn,[])) | [Terminal x], [] -> (try mkprim (loc, Numeral (Bigint.of_string x)) with _ -> mknot (loc,ntn,[])) | _ -> mknot (loc,ntn,l) let make_notation loc ntn (terms,termlists,binders as subst) = if termlists <> [] or binders <> [] then CNotation (loc,ntn,subst) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CNotation (loc,ntn,(l,[],[]))) (fun (loc,p) -> CPrim (loc,p)) destPrim terms let make_pat_notation loc ntn (terms,termlists as subst) = if termlists <> [] then CPatNotation (loc,ntn,subst) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CPatNotation (loc,ntn,(l,[]))) (fun (loc,p) -> CPatPrim (loc,p)) destPatPrim terms let mkPat loc qid l = (* Normally irrelevant test with v8 syntax, but let's do it anyway *) if l = [] then CPatAtom (loc,Some qid) else CPatCstr (loc,qid,l) (* Better to use extern_glob_constr composed with injection/retraction ?? *) let rec extern_cases_pattern_in_scope (scopes:local_scopes) vars pat = try if !Flags.raw_print or !print_no_symbol then raise No_match; let (na,sc,p) = uninterp_prim_token_cases_pattern pat in match availability_of_prim_token p sc scopes with | None -> raise No_match | Some key -> let loc = cases_pattern_loc pat in insert_pat_alias loc (insert_pat_delimiters loc (CPatPrim(loc,p)) key) na with No_match -> try if !Flags.raw_print or !print_no_symbol then raise No_match; extern_symbol_pattern scopes vars pat (uninterp_cases_pattern_notations pat) with No_match -> match pat with | PatVar (loc,Name id) -> CPatAtom (loc,Some (Ident (loc,id))) | PatVar (loc,Anonymous) -> CPatAtom (loc, None) | PatCstr(loc,cstrsp,args,na) -> let args = List.map (extern_cases_pattern_in_scope scopes vars) args in let p = try if !in_debugger || !Flags.raw_print then raise Exit; let projs = Recordops.lookup_projections (fst cstrsp) in let rec ip projs args acc = match projs with | [] -> acc | None :: q -> ip q args acc | Some c :: q -> match args with | [] -> raise No_match | CPatAtom(_, None) :: tail -> ip q tail acc (* we don't want to have 'x = _' in our patterns *) | head :: tail -> ip q tail ((extern_reference loc Idset.empty (ConstRef c), head) :: acc) in CPatRecord(loc, List.rev (ip projs args [])) with Not_found | No_match | Exit -> CPatCstr (loc, extern_reference loc vars (ConstructRef cstrsp), args) in insert_pat_alias loc p na and extern_symbol_pattern (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try match t,n with | PatCstr (loc,(ind,_),l,na), n when n = Some 0 or n = None or n = Some(fst(Global.lookup_inductive ind)).Declarations.mind_nparams -> (* Abbreviation for the constructor name only *) (match keyrule with | NotationRule (sc,ntn) -> raise No_match | SynDefRule kn -> let qid = Qualid (loc, shortest_qualid_of_syndef vars kn) in let l = List.map (extern_cases_pattern_in_scope allscopes vars) l in insert_pat_alias loc (mkPat loc qid l) na) | PatCstr (_,f,l,_), Some n when List.length l > n -> raise No_match | PatCstr (loc,_,_,na),_ -> (* Try matching ... *) let subst,substlist = match_aconstr_cases_pattern t pat in (* Try availability of interpretation ... *) let p = match keyrule with | NotationRule (sc,ntn) -> (match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes') vars c) subst in let ll = List.map (fun (c,(scopt,scl)) -> let subscope = (scopt,scl@scopes') in List.map (extern_cases_pattern_in_scope subscope vars) c) substlist in insert_pat_delimiters loc (make_pat_notation loc ntn (l,ll)) key) | SynDefRule kn -> let qid = Qualid (loc, shortest_qualid_of_syndef vars kn) in let l = List.map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes) vars c) subst in assert (substlist = []); mkPat loc qid l in insert_pat_alias loc p na | PatVar (loc,Anonymous),_ -> CPatAtom (loc, None) | PatVar (loc,Name id),_ -> CPatAtom (loc, Some (Ident (loc,id))) with No_match -> extern_symbol_pattern allscopes vars t rules let extern_cases_pattern vars p = extern_cases_pattern_in_scope (None,[]) vars p (**********************************************************************) (* Externalising applications *) let occur_name na aty = match na with | Name id -> occur_var_constr_expr id aty | Anonymous -> false let is_projection nargs = function | Some r when not !Flags.raw_print & !print_projections -> (try let n = Recordops.find_projection_nparams r + 1 in if n <= nargs then Some n else None with Not_found -> None) | _ -> None let is_hole = function CHole _ -> true | _ -> false let is_significant_implicit a = not (is_hole a) let is_needed_for_correct_partial_application tail imp = tail = [] & not (maximal_insertion_of imp) (* Implicit args indexes are in ascending order *) (* inctx is useful only if there is a last argument to be deduced from ctxt *) let explicitize loc inctx impl (cf,f) args = let impl = if !Constrintern.parsing_explicit then [] else impl in let n = List.length args in let rec exprec q = function | a::args, imp::impl when is_status_implicit imp -> let tail = exprec (q+1) (args,impl) in let visible = !Flags.raw_print or (!print_implicits & !print_implicits_explicit_args) or (is_needed_for_correct_partial_application tail imp) or (!print_implicits_defensive & is_significant_implicit a & not (is_inferable_implicit inctx n imp)) in if visible then (a,Some (dummy_loc, ExplByName (name_of_implicit imp))) :: tail else tail | a::args, _::impl -> (a,None) :: exprec (q+1) (args,impl) | args, [] -> List.map (fun a -> (a,None)) args (*In case of polymorphism*) | [], _ -> [] in match is_projection (List.length args) cf with | Some i as ip -> if impl <> [] & is_status_implicit (List.nth impl (i-1)) then let f' = match f with CRef f -> f | _ -> assert false in CAppExpl (loc,(ip,f'),args) else let (args1,args2) = list_chop i args in let (impl1,impl2) = if impl=[] then [],[] else list_chop i impl in let args1 = exprec 1 (args1,impl1) in let args2 = exprec (i+1) (args2,impl2) in CApp (loc,(Some (List.length args1),f),args1@args2) | None -> let args = exprec 1 (args,impl) in if args = [] then f else CApp (loc, (None, f), args) let extern_global loc impl f = if not !Constrintern.parsing_explicit && impl <> [] && List.for_all is_status_implicit impl then CAppExpl (loc, (None, f), []) else CRef f let extern_app loc inctx impl (cf,f) args = if args = [] (* maybe caused by a hidden coercion *) then extern_global loc impl f else if not !Constrintern.parsing_explicit && ((!Flags.raw_print or (!print_implicits & not !print_implicits_explicit_args)) & List.exists is_status_implicit impl) then CAppExpl (loc, (is_projection (List.length args) cf, f), args) else explicitize loc inctx impl (cf,CRef f) args let rec extern_args extern scopes env args subscopes = match args with | [] -> [] | a::args -> let argscopes, subscopes = match subscopes with | [] -> (None,scopes), [] | scopt::subscopes -> (scopt,scopes), subscopes in extern argscopes env a :: extern_args extern scopes env args subscopes let rec remove_coercions inctx = function | GApp (loc,GRef (_,r),args) as c when not (!Flags.raw_print or !print_coercions) -> let nargs = List.length args in (try match Classops.hide_coercion r with | Some n when n < nargs && (inctx or n+1 < nargs) -> (* We skip a coercion *) let l = list_skipn n args in let (a,l) = match l with a::l -> (a,l) | [] -> assert false in (* Recursively remove the head coercions *) let a' = remove_coercions true a in (* Don't flatten App's in case of funclass so that (atomic) notations on [a] work; should be compatible since printer does not care whether App's are collapsed or not and notations with an implicit coercion using funclass either would have already been confused with ordinary application or would have need a surrounding context and the coercion to funclass would have been made explicit to match *) if l = [] then a' else GApp (loc,a',l) | _ -> c with Not_found -> c) | c -> c let rec flatten_application = function | GApp (loc,GApp(_,a,l'),l) -> flatten_application (GApp (loc,a,l'@l)) | a -> a (**********************************************************************) (* mapping glob_constr to numerals (in presence of coercions, choose the *) (* one with no delimiter if possible) *) let extern_possible_prim_token scopes r = try let (sc,n) = uninterp_prim_token r in match availability_of_prim_token n sc scopes with | None -> None | Some key -> Some (insert_delimiters (CPrim (loc_of_glob_constr r,n)) key) with No_match -> None let extern_optimal_prim_token scopes r r' = let c = extern_possible_prim_token scopes r in let c' = if r==r' then None else extern_possible_prim_token scopes r' in match c,c' with | Some n, (Some (CDelimiters _) | None) | _, Some n -> n | _ -> raise No_match (**********************************************************************) (* mapping glob_constr to constr_expr *) let extern_glob_sort = function | GProp _ as s -> s | GType (Some _) as s when !print_universes -> s | GType _ -> GType None let rec extern inctx scopes vars r = let r' = remove_coercions inctx r in try if !Flags.raw_print or !print_no_symbol then raise No_match; extern_optimal_prim_token scopes r r' with No_match -> try let r'' = flatten_application r' in if !Flags.raw_print or !print_no_symbol then raise No_match; extern_symbol scopes vars r'' (uninterp_notations r'') with No_match -> match r' with | GRef (loc,ref) -> extern_global loc (select_stronger_impargs (implicits_of_global ref)) (extern_reference loc vars ref) | GVar (loc,id) -> CRef (Ident (loc,id)) | GEvar (loc,n,None) when !print_meta_as_hole -> CHole (loc, None) | GEvar (loc,n,l) -> extern_evar loc n (Option.map (List.map (extern false scopes vars)) l) | GPatVar (loc,n) -> if !print_meta_as_hole then CHole (loc, None) else CPatVar (loc,n) | GApp (loc,f,args) -> (match f with | GRef (rloc,ref) -> let subscopes = find_arguments_scope ref in let args = extern_args (extern true) (snd scopes) vars args subscopes in begin try if !Flags.raw_print then raise Exit; let cstrsp = match ref with ConstructRef c -> c | _ -> raise Not_found in let struc = Recordops.lookup_structure (fst cstrsp) in if PrintingRecord.active (fst cstrsp) then () else if PrintingConstructor.active (fst cstrsp) then raise Exit else if not !Flags.record_print then raise Exit; let projs = struc.Recordops.s_PROJ in let locals = struc.Recordops.s_PROJKIND in let rec cut args n = if n = 0 then args else match args with | [] -> raise No_match | _ :: t -> cut t (n - 1) in let args = cut args struc.Recordops.s_EXPECTEDPARAM in let rec ip projs locs args acc = match projs with | [] -> acc | None :: q -> raise No_match | Some c :: q -> match locs with | [] -> anomaly "projections corruption [Constrextern.extern]" | (_, false) :: locs' -> (* we don't want to print locals *) ip q locs' args acc | (_, true) :: locs' -> match args with | [] -> raise No_match (* we give up since the constructor is not complete *) | head :: tail -> ip q locs' tail ((extern_reference loc Idset.empty (ConstRef c), head) :: acc) in CRecord (loc, None, List.rev (ip projs locals args [])) with | Not_found | No_match | Exit -> extern_app loc inctx (select_stronger_impargs (implicits_of_global ref)) (Some ref,extern_reference rloc vars ref) args end | _ -> explicitize loc inctx [] (None,sub_extern false scopes vars f) (List.map (sub_extern true scopes vars) args)) | GProd (loc,Anonymous,_,t,c) -> (* Anonymous product are never factorized *) CArrow (loc,extern_typ scopes vars t, extern_typ scopes vars c) | GLetIn (loc,na,t,c) -> CLetIn (loc,(loc,na),sub_extern false scopes vars t, extern inctx scopes (add_vname vars na) c) | GProd (loc,na,bk,t,c) -> let t = extern_typ scopes vars (anonymize_if_reserved na t) in let (idl,c) = factorize_prod scopes (add_vname vars na) na bk t c in CProdN (loc,[(dummy_loc,na)::idl,Default bk,t],c) | GLambda (loc,na,bk,t,c) -> let t = extern_typ scopes vars (anonymize_if_reserved na t) in let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) na bk t c in CLambdaN (loc,[(dummy_loc,na)::idl,Default bk,t],c) | GCases (loc,sty,rtntypopt,tml,eqns) -> let vars' = List.fold_right (name_fold Idset.add) (cases_predicate_names tml) vars in let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in let tml = List.map (fun (tm,(na,x)) -> let na' = match na,tm with Anonymous, GVar (_,id) when rtntypopt<>None & occur_glob_constr id (Option.get rtntypopt) -> Some (dummy_loc,Anonymous) | Anonymous, _ -> None | Name id, GVar (_,id') when id=id' -> None | Name _, _ -> Some (dummy_loc,na) in (sub_extern false scopes vars tm, (na',Option.map (fun (loc,ind,n,nal) -> let params = list_tabulate (fun _ -> GHole (dummy_loc,Evd.InternalHole)) n in let args = List.map (function | Anonymous -> GHole (dummy_loc,Evd.InternalHole) | Name id -> GVar (dummy_loc,id)) nal in let t = GApp (dummy_loc,GRef (dummy_loc,IndRef ind),params@args) in (extern_typ scopes vars t)) x))) tml in let eqns = List.map (extern_eqn inctx scopes vars) eqns in CCases (loc,sty,rtntypopt',tml,eqns) | GLetTuple (loc,nal,(na,typopt),tm,b) -> CLetTuple (loc,List.map (fun na -> (dummy_loc,na)) nal, (Option.map (fun _ -> (dummy_loc,na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern false scopes vars tm, extern inctx scopes (List.fold_left add_vname vars nal) b) | GIf (loc,c,(na,typopt),b1,b2) -> CIf (loc,sub_extern false scopes vars c, (Option.map (fun _ -> (dummy_loc,na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2) | GRec (loc,fk,idv,blv,tyv,bv) -> let vars' = Array.fold_right Idset.add idv vars in (match fk with | GFix (nv,n) -> let listdecl = Array.mapi (fun i fi -> let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in let (assums,ids,bl) = extern_local_binder scopes vars bl in let vars0 = List.fold_right (name_fold Idset.add) ids vars in let vars1 = List.fold_right (name_fold Idset.add) ids vars' in let n = match fst nv.(i) with | None -> None | Some x -> Some (dummy_loc, out_name (List.nth assums x)) in let ro = extern_recursion_order scopes vars (snd nv.(i)) in ((dummy_loc, fi), (n, ro), bl, extern_typ scopes vars0 ty, extern false scopes vars1 def)) idv in CFix (loc,(loc,idv.(n)),Array.to_list listdecl) | GCoFix n -> let listdecl = Array.mapi (fun i fi -> let (_,ids,bl) = extern_local_binder scopes vars blv.(i) in let vars0 = List.fold_right (name_fold Idset.add) ids vars in let vars1 = List.fold_right (name_fold Idset.add) ids vars' in ((dummy_loc, fi),bl,extern_typ scopes vars0 tyv.(i), sub_extern false scopes vars1 bv.(i))) idv in CCoFix (loc,(loc,idv.(n)),Array.to_list listdecl)) | GSort (loc,s) -> CSort (loc,extern_glob_sort s) | GHole (loc,e) -> CHole (loc, Some e) | GCast (loc,c, CastConv (k,t)) -> CCast (loc,sub_extern true scopes vars c, CastConv (k,extern_typ scopes vars t)) | GCast (loc,c, CastCoerce) -> CCast (loc,sub_extern true scopes vars c, CastCoerce) and extern_typ (_,scopes) = extern true (Some Notation.type_scope,scopes) and sub_extern inctx (_,scopes) = extern inctx (None,scopes) and factorize_prod scopes vars na bk aty c = let c = extern_typ scopes vars c in match na, c with | Name id, CProdN (loc,[nal,Default bk',ty],c) when bk = bk' && is_same_type aty ty & not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and factorize_lambda inctx scopes vars na bk aty c = let c = sub_extern inctx scopes vars c in match c with | CLambdaN (loc,[nal,Default bk',ty],c) when bk = bk' && is_same_type aty ty & not (occur_name na ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and extern_local_binder scopes vars = function [] -> ([],[],[]) | (na,bk,Some bd,ty)::l -> let (assums,ids,l) = extern_local_binder scopes (name_fold Idset.add na vars) l in (assums,na::ids, LocalRawDef((dummy_loc,na), extern false scopes vars bd) :: l) | (na,bk,None,ty)::l -> let ty = extern_typ scopes vars (anonymize_if_reserved na ty) in (match extern_local_binder scopes (name_fold Idset.add na vars) l with (assums,ids,LocalRawAssum(nal,k,ty')::l) when is_same_type ty ty' & match na with Name id -> not (occur_var_constr_expr id ty') | _ -> true -> (na::assums,na::ids, LocalRawAssum((dummy_loc,na)::nal,k,ty')::l) | (assums,ids,l) -> (na::assums,na::ids, LocalRawAssum([(dummy_loc,na)],Default bk,ty) :: l)) and extern_eqn inctx scopes vars (loc,ids,pl,c) = (loc,[loc,List.map (extern_cases_pattern_in_scope scopes vars) pl], extern inctx scopes vars c) and extern_symbol (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> let loc = Glob_term.loc_of_glob_constr t in try (* Adjusts to the number of arguments expected by the notation *) let (t,args,argsscopes,argsimpls) = match t,n with | GApp (_,f,args), Some n when List.length args >= n -> let args1, args2 = list_chop n args in let subscopes, impls = match f with | GRef (_,ref) -> let subscopes = try list_skipn n (find_arguments_scope ref) with _ -> [] in let impls = let impls = select_impargs_size (List.length args) (implicits_of_global ref) in try list_skipn n impls with _ -> [] in subscopes,impls | _ -> [], [] in (if n = 0 then f else GApp (dummy_loc,f,args1)), args2, subscopes, impls | GApp (_,(GRef (_,ref) as f),args), None -> let subscopes = find_arguments_scope ref in let impls = select_impargs_size (List.length args) (implicits_of_global ref) in f, args, subscopes, impls | GRef _, Some 0 -> GApp (dummy_loc,t,[]), [], [], [] | _, None -> t, [], [], [] | _ -> raise No_match in (* Try matching ... *) let terms,termlists,binders = match_aconstr !print_universes t pat in (* Try availability of interpretation ... *) let e = match keyrule with | NotationRule (sc,ntn) -> (match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern (* assuming no overloading: *) true (scopt,scl@scopes') vars c) terms in let ll = List.map (fun (c,(scopt,scl)) -> List.map (extern true (scopt,scl@scopes') vars) c) termlists in let bll = List.map (fun (bl,(scopt,scl)) -> pi3 (extern_local_binder (scopt,scl@scopes') vars bl)) binders in insert_delimiters (make_notation loc ntn (l,ll,bll)) key) | SynDefRule kn -> let l = List.map (fun (c,(scopt,scl)) -> extern true (scopt,scl@scopes) vars c, None) terms in let a = CRef (Qualid (loc, shortest_qualid_of_syndef vars kn)) in if l = [] then a else CApp (loc,(None,a),l) in if args = [] then e else let args = extern_args (extern true) scopes vars args argsscopes in explicitize loc false argsimpls (None,e) args with No_match -> extern_symbol allscopes vars t rules and extern_recursion_order scopes vars = function GStructRec -> CStructRec | GWfRec c -> CWfRec (extern true scopes vars c) | GMeasureRec (m,r) -> CMeasureRec (extern true scopes vars m, Option.map (extern true scopes vars) r) let extern_glob_constr vars c = extern false (None,[]) vars c let extern_glob_type vars c = extern_typ (None,[]) vars c (******************************************************************) (* Main translation function from constr -> constr_expr *) let loc = dummy_loc (* for constr and pattern, locations are lost *) let extern_constr_gen goal_concl_style scopt env t = (* "goal_concl_style" means do alpha-conversion using the "goal" convention *) (* i.e.: avoid using the names of goal/section/rel variables and the short *) (* names of global definitions of current module when computing names for *) (* bound variables. *) (* Not "goal_concl_style" means do alpha-conversion avoiding only *) (* those goal/section/rel variables that occurs in the subterm under *) (* consideration; see namegen.ml for further details *) let avoid = if goal_concl_style then ids_of_context env else [] in let rel_env_names = names_of_rel_context env in let r = Detyping.detype goal_concl_style avoid rel_env_names t in let vars = vars_of_env env in extern false (scopt,[]) vars r let extern_constr_in_scope goal_concl_style scope env t = extern_constr_gen goal_concl_style (Some scope) env t let extern_constr goal_concl_style env t = extern_constr_gen goal_concl_style None env t let extern_type goal_concl_style env t = let avoid = if goal_concl_style then ids_of_context env else [] in let rel_env_names = names_of_rel_context env in let r = Detyping.detype goal_concl_style avoid rel_env_names t in extern_glob_type (vars_of_env env) r let extern_sort s = extern_glob_sort (detype_sort s) (******************************************************************) (* Main translation function from pattern -> constr_expr *) let any_any_branch = (* | _ => _ *) (loc,[],[PatVar (loc,Anonymous)],GHole (loc,Evd.InternalHole)) let rec glob_of_pat env = function | PRef ref -> GRef (loc,ref) | PVar id -> GVar (loc,id) | PEvar (n,l) -> GEvar (loc,n,Some (array_map_to_list (glob_of_pat env) l)) | PRel n -> let id = try match lookup_name_of_rel n env with | Name id -> id | Anonymous -> anomaly "glob_constr_of_pattern: index to an anonymous variable" with Not_found -> id_of_string ("_UNBOUND_REL_"^(string_of_int n)) in GVar (loc,id) | PMeta None -> GHole (loc,Evd.InternalHole) | PMeta (Some n) -> GPatVar (loc,(false,n)) | PApp (f,args) -> GApp (loc,glob_of_pat env f,array_map_to_list (glob_of_pat env) args) | PSoApp (n,args) -> GApp (loc,GPatVar (loc,(true,n)), List.map (glob_of_pat env) args) | PProd (na,t,c) -> GProd (loc,na,Explicit,glob_of_pat env t,glob_of_pat (na::env) c) | PLetIn (na,t,c) -> GLetIn (loc,na,glob_of_pat env t, glob_of_pat (na::env) c) | PLambda (na,t,c) -> GLambda (loc,na,Explicit,glob_of_pat env t, glob_of_pat (na::env) c) | PIf (c,b1,b2) -> GIf (loc, glob_of_pat env c, (Anonymous,None), glob_of_pat env b1, glob_of_pat env b2) | PCase ({cip_style=LetStyle; cip_ind_args=None},PMeta None,tm,[(0,n,b)]) -> let nal,b = it_destRLambda_or_LetIn_names n (glob_of_pat env b) in GLetTuple (loc,nal,(Anonymous,None),glob_of_pat env tm,b) | PCase (info,p,tm,bl) -> let mat = match bl, info.cip_ind with | [], _ -> [] | _, Some ind -> let bl' = List.map (fun (i,n,c) -> (i,n,glob_of_pat env c)) bl in simple_cases_matrix_of_branches ind bl' | _, None -> anomaly "PCase with some branches but unknown inductive" in let mat = if info.cip_extensible then mat @ [any_any_branch] else mat in let indnames,rtn = match p, info.cip_ind, info.cip_ind_args with | PMeta None, _, _ -> (Anonymous,None),None | _, Some ind, Some (nparams,nargs) -> return_type_of_predicate ind nparams nargs (glob_of_pat env p) | _ -> anomaly "PCase with non-trivial predicate but unknown inductive" in GCases (loc,RegularStyle,rtn,[glob_of_pat env tm,indnames],mat) | PFix f -> Detyping.detype false [] env (mkFix f) | PCoFix c -> Detyping.detype false [] env (mkCoFix c) | PSort s -> GSort (loc,s) let extern_constr_pattern env pat = extern true (None,[]) Idset.empty (glob_of_pat env pat) let extern_rel_context where env sign = let a = detype_rel_context where [] (names_of_rel_context env) sign in let vars = vars_of_env env in pi3 (extern_local_binder (None,[]) vars a)