(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Prop. Infix Local "==" Aequiv (at level 5, no associativity). Variable S : (Setoid_Theory A Aequiv). Add Setoid A Aequiv S. Variable Aplus : A -> A -> A. Variable Amult : A -> A -> A. Variable Aone : A. Variable Azero : A. Variable Aopp : A -> A. Variable Aeq : A -> A -> bool. Infix 4 "+" Aplus V8only 50 (left associativity). Infix 4 "*" Amult V8only 40 (left associativity). Notation "0" := Azero. Notation "1" := Aone. Notation "- x" := (Aopp x) (at level 0) V8only. Variable plus_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a+a1 == a0+a2. Variable mult_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a*a1 == a0*a2. Variable opp_morph : (a,a0:A) a == a0 -> -a == -a0. Add Morphism Aplus : Aplus_ext. Exact plus_morph. Save. Add Morphism Amult : Amult_ext. Exact mult_morph. Save. Add Morphism Aopp : Aopp_ext. Exact opp_morph. Save. Section Theory_of_semi_setoid_rings. Record Semi_Setoid_Ring_Theory : Prop := { SSR_plus_sym : (n,m:A) n + m == m + n; SSR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; SSR_mult_sym : (n,m:A) n*m == m*n; SSR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; SSR_plus_zero_left :(n:A) 0 + n == n; SSR_mult_one_left : (n:A) 1*n == n; SSR_mult_zero_left : (n:A) 0*n == 0; SSR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; SSR_plus_reg_left : (n,m,p:A)n + m == n + p -> m == p; SSR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y }. Variable T : Semi_Setoid_Ring_Theory. Local plus_sym := (SSR_plus_sym T). Local plus_assoc := (SSR_plus_assoc T). Local mult_sym := ( SSR_mult_sym T). Local mult_assoc := (SSR_mult_assoc T). Local plus_zero_left := (SSR_plus_zero_left T). Local mult_one_left := (SSR_mult_one_left T). Local mult_zero_left := (SSR_mult_zero_left T). Local distr_left := (SSR_distr_left T). Local plus_reg_left := (SSR_plus_reg_left T). Local equiv_refl := (Seq_refl A Aequiv S). Local equiv_sym := (Seq_sym A Aequiv S). Local equiv_trans := (Seq_trans A Aequiv S). Hints Resolve plus_sym plus_assoc mult_sym mult_assoc plus_zero_left mult_one_left mult_zero_left distr_left plus_reg_left equiv_refl (*equiv_sym*). Hints Immediate equiv_sym. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma SSR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). Auto. Save. Lemma SSR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). Auto. Save. Lemma SSR_plus_zero_left2 : (n:A) n == 0 + n. Auto. Save. Lemma SSR_mult_one_left2 : (n:A) n == 1*n. Auto. Save. Lemma SSR_mult_zero_left2 : (n:A) 0 == 0*n. Auto. Save. Lemma SSR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. Auto. Save. Lemma SSR_plus_permute : (n,m,p:A) n+(m+p) == m+(n+p). Intros. Rewrite (plus_assoc n m p). Rewrite (plus_sym n m). Rewrite <- (plus_assoc m n p). Trivial. Save. Lemma SSR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). Intros. Rewrite (mult_assoc n m p). Rewrite (mult_sym n m). Rewrite <- (mult_assoc m n p). Trivial. Save. Hints Resolve SSR_plus_permute SSR_mult_permute. Lemma SSR_distr_right : (n,m,p:A) n*(m+p) == (n*m) + (n*p). Intros. Rewrite (mult_sym n (Aplus m p)). Rewrite (mult_sym n m). Rewrite (mult_sym n p). Auto. Save. Lemma SSR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p). Intros. Apply equiv_sym. Apply SSR_distr_right. Save. Lemma SSR_mult_zero_right : (n:A) n*0 == 0. Intro; Rewrite (mult_sym n Azero); Auto. Save. Lemma SSR_mult_zero_right2 : (n:A) 0 == n*0. Intro; Rewrite (mult_sym n Azero); Auto. Save. Lemma SSR_plus_zero_right :(n:A) n + 0 == n. Intro; Rewrite (plus_sym n Azero); Auto. Save. Lemma SSR_plus_zero_right2 :(n:A) n == n + 0. Intro; Rewrite (plus_sym n Azero); Auto. Save. Lemma SSR_mult_one_right : (n:A) n*1 == n. Intro; Rewrite (mult_sym n Aone); Auto. Save. Lemma SSR_mult_one_right2 : (n:A) n == n*1. Intro; Rewrite (mult_sym n Aone); Auto. Save. Lemma SSR_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p. Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n). Intro; Apply plus_reg_left with n; Trivial. Save. End Theory_of_semi_setoid_rings. Section Theory_of_setoid_rings. Record Setoid_Ring_Theory : Prop := { STh_plus_sym : (n,m:A) n + m == m + n; STh_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; STh_mult_sym : (n,m:A) n*m == m*n; STh_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; STh_plus_zero_left :(n:A) 0 + n == n; STh_mult_one_left : (n:A) 1*n == n; STh_opp_def : (n:A) n + (-n) == 0; STh_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; STh_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y }. Variable T : Setoid_Ring_Theory. Local plus_sym := (STh_plus_sym T). Local plus_assoc := (STh_plus_assoc T). Local mult_sym := (STh_mult_sym T). Local mult_assoc := (STh_mult_assoc T). Local plus_zero_left := (STh_plus_zero_left T). Local mult_one_left := (STh_mult_one_left T). Local opp_def := (STh_opp_def T). Local distr_left := (STh_distr_left T). Local equiv_refl := (Seq_refl A Aequiv S). Local equiv_sym := (Seq_sym A Aequiv S). Local equiv_trans := (Seq_trans A Aequiv S). Hints Resolve plus_sym plus_assoc mult_sym mult_assoc plus_zero_left mult_one_left opp_def distr_left equiv_refl equiv_sym. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma STh_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). Auto. Save. Lemma STh_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). Auto. Save. Lemma STh_plus_zero_left2 : (n:A) n == 0 + n. Auto. Save. Lemma STh_mult_one_left2 : (n:A) n == 1*n. Auto. Save. Lemma STh_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. Auto. Save. Lemma STh_opp_def2 : (n:A) 0 == n + (-n). Auto. Save. Lemma STh_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p). Intros. Rewrite (plus_assoc n m p). Rewrite (plus_sym n m). Rewrite <- (plus_assoc m n p). Trivial. Save. Lemma STh_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). Intros. Rewrite (mult_assoc n m p). Rewrite (mult_sym n m). Rewrite <- (mult_assoc m n p). Trivial. Save. Hints Resolve STh_plus_permute STh_mult_permute. Lemma Saux1 : (a:A) a + a == a -> a == 0. Intros. Rewrite <- (plus_zero_left a). Rewrite (plus_sym Azero a). Setoid_replace (Aplus a Azero) with (Aplus a (Aplus a (Aopp a))); Auto. Rewrite (plus_assoc a a (Aopp a)). Rewrite H. Apply opp_def. Save. Lemma STh_mult_zero_left :(n:A) 0*n == 0. Intros. Apply Saux1. Rewrite <- (distr_left Azero Azero n). Rewrite (plus_zero_left Azero). Trivial. Save. Hints Resolve STh_mult_zero_left. Lemma STh_mult_zero_left2 : (n:A) 0 == 0*n. Auto. Save. Lemma Saux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y == z. Intros. Rewrite <- (plus_zero_left y). Rewrite <- H0. Rewrite <- (plus_assoc x z y). Rewrite (plus_sym z y). Rewrite (plus_assoc x y z). Rewrite H. Auto. Save. Lemma STh_opp_mult_left : (x,y:A) -(x*y) == (-x)*y. Intros. Apply Saux2 with (Amult x y); Auto. Rewrite <- (distr_left x (Aopp x) y). Rewrite (opp_def x). Auto. Save. Hints Resolve STh_opp_mult_left. Lemma STh_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y) . Auto. Save. Lemma STh_mult_zero_right : (n:A) n*0 == 0. Intro; Rewrite (mult_sym n Azero); Auto. Save. Lemma STh_mult_zero_right2 : (n:A) 0 == n*0. Intro; Rewrite (mult_sym n Azero); Auto. Save. Lemma STh_plus_zero_right :(n:A) n + 0 == n. Intro; Rewrite (plus_sym n Azero); Auto. Save. Lemma STh_plus_zero_right2 :(n:A) n == n + 0. Intro; Rewrite (plus_sym n Azero); Auto. Save. Lemma STh_mult_one_right : (n:A) n*1 == n. Intro; Rewrite (mult_sym n Aone); Auto. Save. Lemma STh_mult_one_right2 : (n:A) n == n*1. Intro; Rewrite (mult_sym n Aone); Auto. Save. Lemma STh_opp_mult_right : (x,y:A) -(x*y) == x*(-y). Intros. Rewrite (mult_sym x y). Rewrite (mult_sym x (Aopp y)). Auto. Save. Lemma STh_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y). Intros. Rewrite (mult_sym x y). Rewrite (mult_sym x (Aopp y)). Auto. Save. Lemma STh_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y). Intros. Apply Saux2 with (Aplus x y); Auto. Rewrite (STh_plus_permute (Aplus x y) (Aopp x) (Aopp y)). Rewrite <- (plus_assoc x y (Aopp y)). Rewrite (opp_def y); Rewrite (STh_plus_zero_right x). Rewrite (STh_opp_def2 x); Trivial. Save. Lemma STh_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p). Auto. Save. Lemma STh_opp_opp : (n:A) -(-n) == n. Intro. Apply Saux2 with (Aopp n); Auto. Rewrite (plus_sym (Aopp n) n); Auto. Save. Hints Resolve STh_opp_opp. Lemma STh_opp_opp2 : (n:A) n == -(-n). Auto. Save. Lemma STh_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y. Intros. Rewrite (STh_opp_mult_left2 x (Aopp y)). Rewrite (STh_opp_mult_right2 x y). Trivial. Save. Lemma STh_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y). Intros. Apply equiv_sym. Apply STh_mult_opp_opp. Save. Lemma STh_opp_zero : -0 == 0. Rewrite <- (plus_zero_left (Aopp Azero)). Trivial. Save. Lemma STh_plus_reg_left : (n,m,p:A) n+m == n+p -> m==p. Intros. Rewrite <- (plus_zero_left m). Rewrite <- (plus_zero_left p). Rewrite <- (opp_def n). Rewrite (plus_sym n (Aopp n)). Rewrite <- (plus_assoc (Aopp n) n m). Rewrite <- (plus_assoc (Aopp n) n p). Auto. Save. Lemma STh_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p. Intros. Apply STh_plus_reg_left with n. Rewrite (plus_sym n m); Rewrite (plus_sym n p); Assumption. Save. Lemma STh_distr_right : (n,m,p:A) n*(m+p) == (n*m)+(n*p). Intros. Rewrite (mult_sym n (Aplus m p)). Rewrite (mult_sym n m). Rewrite (mult_sym n p). Trivial. Save. Lemma STh_distr_right2 : (n,m,p:A) (n*m)+(n*p) == n*(m+p). Intros. Apply equiv_sym. Apply STh_distr_right. Save. End Theory_of_setoid_rings. Hints Resolve STh_mult_zero_left STh_plus_reg_left : core. Unset Implicit Arguments. Definition Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory. Intros until 1; Case H. Split; Intros; Simpl; EAuto. Defined. Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >-> Semi_Setoid_Ring_Theory. Section product_ring. End product_ring. Section power_ring. End power_ring. End Setoid_rings.