(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> A. Variable Amult : A -> A -> A. Variable Aone : A. Variable Azero : A. (* There is also a "weakly decidable" equality on A. That means that if (A_eq x y)=true then x=y but x=y can arise when (A_eq x y)=false. On an abstract ring the function [x,y:A]false is a good choice. The proof of A_eq_prop is in this case easy. *) Variable Aeq : A -> A -> bool. Infix 4 "+" Aplus V8only 50 (left associativity). Infix 4 "*" Amult V8only 40 (left associativity). Notation "0" := Azero. Notation "1" := Aone. Record Semi_Ring_Theory : Prop := { SR_plus_sym : (n,m:A) n + m == m + n; SR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; SR_mult_sym : (n,m:A) n*m == m*n; SR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; SR_plus_zero_left :(n:A) 0 + n == n; SR_mult_one_left : (n:A) 1*n == n; SR_mult_zero_left : (n:A) 0*n == 0; SR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; SR_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p; SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y }. Variable T : Semi_Ring_Theory. Local plus_sym := (SR_plus_sym T). Local plus_assoc := (SR_plus_assoc T). Local mult_sym := ( SR_mult_sym T). Local mult_assoc := (SR_mult_assoc T). Local plus_zero_left := (SR_plus_zero_left T). Local mult_one_left := (SR_mult_one_left T). Local mult_zero_left := (SR_mult_zero_left T). Local distr_left := (SR_distr_left T). Local plus_reg_left := (SR_plus_reg_left T). Hints Resolve plus_sym plus_assoc mult_sym mult_assoc plus_zero_left mult_one_left mult_zero_left distr_left plus_reg_left. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma SR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). Symmetry; EAuto. Qed. Lemma SR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). Symmetry; EAuto. Qed. Lemma SR_plus_zero_left2 : (n:A) n == 0 + n. Symmetry; EAuto. Qed. Lemma SR_mult_one_left2 : (n:A) n == 1*n. Symmetry; EAuto. Qed. Lemma SR_mult_zero_left2 : (n:A) 0 == 0*n. Symmetry; EAuto. Qed. Lemma SR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. Symmetry; EAuto. Qed. Lemma SR_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p). Intros. Rewrite -> plus_assoc. Elim (plus_sym m n). Rewrite <- plus_assoc. Reflexivity. Qed. Lemma SR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). Intros. Rewrite -> mult_assoc. Elim (mult_sym m n). Rewrite <- mult_assoc. Reflexivity. Qed. Hints Resolve SR_plus_permute SR_mult_permute. Lemma SR_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p). Intros. Repeat Rewrite -> (mult_sym n). EAuto. Qed. Lemma SR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p). Symmetry; Apply SR_distr_right. Qed. Lemma SR_mult_zero_right : (n:A) n*0 == 0. Intro; Rewrite mult_sym; EAuto. Qed. Lemma SR_mult_zero_right2 : (n:A) 0 == n*0. Intro; Rewrite mult_sym; EAuto. Qed. Lemma SR_plus_zero_right :(n:A) n + 0 == n. Intro; Rewrite plus_sym; EAuto. Qed. Lemma SR_plus_zero_right2 :(n:A) n == n + 0. Intro; Rewrite plus_sym; EAuto. Qed. Lemma SR_mult_one_right : (n:A) n*1 == n. Intro; Elim mult_sym; Auto. Qed. Lemma SR_mult_one_right2 : (n:A) n == n*1. Intro; Elim mult_sym; Auto. Qed. Lemma SR_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p. Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n); EAuto. Qed. End Theory_of_semi_rings. Section Theory_of_rings. Variable A : Type. Variable Aplus : A -> A -> A. Variable Amult : A -> A -> A. Variable Aone : A. Variable Azero : A. Variable Aopp : A -> A. Variable Aeq : A -> A -> bool. Infix 4 "+" Aplus V8only 50 (left associativity). Infix 4 "*" Amult V8only 40 (left associativity). Notation "0" := Azero. Notation "1" := Aone. Notation "- x" := (Aopp x) (at level 0) V8only. Record Ring_Theory : Prop := { Th_plus_sym : (n,m:A) n + m == m + n; Th_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; Th_mult_sym : (n,m:A) n*m == m*n; Th_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; Th_plus_zero_left :(n:A) 0 + n == n; Th_mult_one_left : (n:A) 1*n == n; Th_opp_def : (n:A) n + (-n) == 0; Th_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y }. Variable T : Ring_Theory. Local plus_sym := (Th_plus_sym T). Local plus_assoc := (Th_plus_assoc T). Local mult_sym := ( Th_mult_sym T). Local mult_assoc := (Th_mult_assoc T). Local plus_zero_left := (Th_plus_zero_left T). Local mult_one_left := (Th_mult_one_left T). Local opp_def := (Th_opp_def T). Local distr_left := (Th_distr_left T). Hints Resolve plus_sym plus_assoc mult_sym mult_assoc plus_zero_left mult_one_left opp_def distr_left. (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma Th_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). Symmetry; EAuto. Qed. Lemma Th_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). Symmetry; EAuto. Qed. Lemma Th_plus_zero_left2 : (n:A) n == 0 + n. Symmetry; EAuto. Qed. Lemma Th_mult_one_left2 : (n:A) n == 1*n. Symmetry; EAuto. Qed. Lemma Th_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. Symmetry; EAuto. Qed. Lemma Th_opp_def2 : (n:A) 0 == n + (-n). Symmetry; EAuto. Qed. Lemma Th_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p). Intros. Rewrite -> plus_assoc. Elim (plus_sym m n). Rewrite <- plus_assoc. Reflexivity. Qed. Lemma Th_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). Intros. Rewrite -> mult_assoc. Elim (mult_sym m n). Rewrite <- mult_assoc. Reflexivity. Qed. Hints Resolve Th_plus_permute Th_mult_permute. Lemma aux1 : (a:A) a + a == a -> a == 0. Intros. Generalize (opp_def a). Pattern 1 a. Rewrite <- H. Rewrite <- plus_assoc. Rewrite -> opp_def. Elim plus_sym. Rewrite plus_zero_left. Trivial. Qed. Lemma Th_mult_zero_left :(n:A) 0*n == 0. Intros. Apply aux1. Rewrite <- distr_left. Rewrite plus_zero_left. Reflexivity. Qed. Hints Resolve Th_mult_zero_left. Lemma Th_mult_zero_left2 : (n:A) 0 == 0*n. Symmetry; EAuto. Qed. Lemma aux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y==z. Intros. Rewrite <- (plus_zero_left y). Elim H0. Elim plus_assoc. Elim (plus_sym y z). Rewrite -> plus_assoc. Rewrite -> H. Rewrite plus_zero_left. Reflexivity. Qed. Lemma Th_opp_mult_left : (x,y:A) -(x*y) == (-x)*y. Intros. Apply (aux2 1!x*y); [ Apply opp_def | Rewrite <- distr_left; Rewrite -> opp_def; Auto]. Qed. Hints Resolve Th_opp_mult_left. Lemma Th_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y). Symmetry; EAuto. Qed. Lemma Th_mult_zero_right : (n:A) n*0 == 0. Intro; Elim mult_sym; EAuto. Qed. Lemma Th_mult_zero_right2 : (n:A) 0 == n*0. Intro; Elim mult_sym; EAuto. Qed. Lemma Th_plus_zero_right :(n:A) n + 0 == n. Intro; Rewrite plus_sym; EAuto. Qed. Lemma Th_plus_zero_right2 :(n:A) n == n + 0. Intro; Rewrite plus_sym; EAuto. Qed. Lemma Th_mult_one_right : (n:A) n*1 == n. Intro;Elim mult_sym; EAuto. Qed. Lemma Th_mult_one_right2 : (n:A) n == n*1. Intro;Elim mult_sym; EAuto. Qed. Lemma Th_opp_mult_right : (x,y:A) -(x*y) == x*(-y). Intros; Do 2 Rewrite -> (mult_sym x); Auto. Qed. Lemma Th_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y). Intros; Do 2 Rewrite -> (mult_sym x); Auto. Qed. Lemma Th_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y). Intros. Apply (aux2 1! x + y); [ Elim plus_assoc; Rewrite -> (Th_plus_permute y (-x)); Rewrite -> plus_assoc; Rewrite -> opp_def; Rewrite plus_zero_left; Auto | Auto ]. Qed. Lemma Th_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p). EAuto. Qed. Lemma Th_opp_opp : (n:A) -(-n) == n. Intro; Apply (aux2 1! -n); [ Auto | Elim plus_sym; Auto ]. Qed. Hints Resolve Th_opp_opp. Lemma Th_opp_opp2 : (n:A) n == -(-n). Symmetry; EAuto. Qed. Lemma Th_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y. Intros; Rewrite <- Th_opp_mult_left; Rewrite <- Th_opp_mult_right; Auto. Qed. Lemma Th_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y). Symmetry; Apply Th_mult_opp_opp. Qed. Lemma Th_opp_zero : -0 == 0. Rewrite <- (plus_zero_left (-0)). Auto. Qed. Lemma Th_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p. Intros; Generalize (congr_eqT ? ? [z] (-n)+z ? ? H). Repeat Rewrite plus_assoc. Rewrite (plus_sym (-n) n). Rewrite opp_def. Repeat Rewrite Th_plus_zero_left; EAuto. Qed. Lemma Th_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p. Intros. EApply Th_plus_reg_left with n. Rewrite (plus_sym n m). Rewrite (plus_sym n p). Auto. Qed. Lemma Th_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p). Intros. Repeat Rewrite -> (mult_sym n). EAuto. Qed. Lemma Th_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p). Symmetry; Apply Th_distr_right. Qed. End Theory_of_rings. Hints Resolve Th_mult_zero_left Th_plus_reg_left : core. Unset Implicit Arguments. Definition Semi_Ring_Theory_of : (A:Type)(Aplus : A -> A -> A)(Amult : A -> A -> A)(Aone : A) (Azero : A)(Aopp : A -> A)(Aeq : A -> A -> bool) (Ring_Theory Aplus Amult Aone Azero Aopp Aeq) ->(Semi_Ring_Theory Aplus Amult Aone Azero Aeq). Intros until 1; Case H. Split; Intros; Simpl; EAuto. Defined. (* Every ring can be viewed as a semi-ring : this property will be used in Abstract_polynom. *) Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory. Section product_ring. End product_ring. Section power_ring. End power_ring.