open Evd open Libnames open Coqlib open Term open Names open Util (****************************************************************************) (* Library linking *) let contrib_name = "subtac" let subtac_dir = [contrib_name] let fix_sub_module = "FixSub" let utils_module = "Utils" let fixsub_module = subtac_dir @ [fix_sub_module] let utils_module = subtac_dir @ [utils_module] let init_constant dir s = gen_constant contrib_name dir s let init_reference dir s = gen_reference contrib_name dir s let fixsub = lazy (init_constant fixsub_module "Fix_sub") let ex_pi1 = lazy (init_constant utils_module "ex_pi1") let ex_pi2 = lazy (init_constant utils_module "ex_pi2") let make_ref l s = lazy (init_reference l s) let well_founded_ref = make_ref ["Init";"Wf"] "Well_founded" let acc_ref = make_ref ["Init";"Wf"] "Acc" let acc_inv_ref = make_ref ["Init";"Wf"] "Acc_inv" let fix_sub_ref = make_ref ["subtac";"FixSub"] "Fix_sub" let fix_measure_sub_ref = make_ref ["subtac";"FixSub"] "Fix_measure_sub" let lt_ref = make_ref ["Init";"Peano"] "lt" let lt_wf_ref = make_ref ["Wf_nat"] "lt_wf" let make_ref s = Qualid (dummy_loc, qualid_of_string s) let sig_ref = make_ref "Init.Specif.sig" let proj1_sig_ref = make_ref "Init.Specif.proj1_sig" let proj2_sig_ref = make_ref "Init.Specif.proj2_sig" let build_sig () = { proj1 = init_constant ["Init"; "Specif"] "proj1_sig"; proj2 = init_constant ["Init"; "Specif"] "proj2_sig"; elim = init_constant ["Init"; "Specif"] "sig_rec"; intro = init_constant ["Init"; "Specif"] "exist"; typ = init_constant ["Init"; "Specif"] "sig" } let sig_ = lazy (build_sig ()) let eqind = lazy (init_constant ["Init"; "Logic"] "eq") let eqind_ref = lazy (init_reference ["Init"; "Logic"] "eq") let refl_equal_ref = lazy (init_reference ["Init"; "Logic"] "refl_equal") let ex_ind = lazy (init_constant ["Init"; "Logic"] "ex") let ex_intro = lazy (init_reference ["Init"; "Logic"] "ex_intro") let proj1 = lazy (init_constant ["Init"; "Logic"] "proj1") let proj2 = lazy (init_constant ["Init"; "Logic"] "proj2") let boolind = lazy (init_constant ["Init"; "Datatypes"] "bool") let sumboolind = lazy (init_constant ["Init"; "Specif"] "sumbool") let natind = lazy (init_constant ["Init"; "Datatypes"] "nat") let intind = lazy (init_constant ["ZArith"; "binint"] "Z") let existSind = lazy (init_constant ["Init"; "Specif"] "sigS") let existS = lazy (build_sigma_type ()) let prod = lazy (build_prod ()) (* orders *) let well_founded = lazy (init_constant ["Init"; "Wf"] "well_founded") let fix = lazy (init_constant ["Init"; "Wf"] "Fix") let acc = lazy (init_constant ["Init"; "Wf"] "Acc") let acc_inv = lazy (init_constant ["Init"; "Wf"] "Acc_inv") let extconstr = Constrextern.extern_constr true (Global.env ()) let extsort s = Constrextern.extern_constr true (Global.env ()) (mkSort s) open Pp let my_print_constr = Termops.print_constr_env let my_print_constr_expr = Ppconstr.pr_constr_expr let my_print_context = Termops.print_rel_context let my_print_named_context = Termops.print_named_context let my_print_env = Termops.print_env let my_print_rawconstr = Printer.pr_rawconstr_env let my_print_evardefs = Evd.pr_evar_defs let my_print_tycon_type = Evarutil.pr_tycon_type let debug_level = 1 let debug_on = true let debug n s = if debug_on then if !Options.debug && n >= debug_level then msgnl s else () else () let debug_msg n s = if debug_on then if !Options.debug && n >= debug_level then s else mt () else mt () let trace s = if debug_on then if !Options.debug && debug_level > 0 then msgnl s else () else () let wf_relations = Hashtbl.create 10 let std_relations () = let add k v = Hashtbl.add wf_relations k v in add (init_constant ["Init"; "Peano"] "lt") (lazy (init_constant ["Arith"; "Wf_nat"] "lt_wf")) let std_relations = Lazy.lazy_from_fun std_relations type binders = Topconstr.local_binder list let app_opt c e = match c with Some constr -> constr e | None -> e let print_args env args = Array.fold_right (fun a acc -> my_print_constr env a ++ spc () ++ acc) args (str "") let make_existential loc env isevars c = let evar = Evarutil.e_new_evar isevars env ~src:(loc, QuestionMark) c in let (key, args) = destEvar evar in (try debug 2 (str "Constructed evar " ++ int key ++ str " applied to args: " ++ print_args env args) with _ -> ()); evar let make_existential_expr loc env c = let key = Evarutil.new_untyped_evar () in let evar = Topconstr.CEvar (loc, key) in debug 2 (str "Constructed evar " ++ int key); evar let string_of_hole_kind = function | ImplicitArg _ -> "ImplicitArg" | BinderType _ -> "BinderType" | QuestionMark -> "QuestionMark" | CasesType -> "CasesType" | InternalHole -> "InternalHole" | TomatchTypeParameter _ -> "TomatchTypeParameter" let non_instanciated_map env evd = let evm = evars_of !evd in List.fold_left (fun evm (key, evi) -> let (loc,k) = evar_source key !evd in debug 2 (str "evar " ++ int key ++ str " has kind " ++ str (string_of_hole_kind k)); match k with QuestionMark -> Evd.add evm key evi | _ -> debug 2 (str " and is an implicit"); Pretype_errors.error_unsolvable_implicit loc env evm k) Evd.empty (Evarutil.non_instantiated evm) let global_kind = Decl_kinds.IsDefinition Decl_kinds.Definition let goal_kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Definition let global_proof_kind = Decl_kinds.IsProof Decl_kinds.Lemma let goal_proof_kind = Decl_kinds.Global, Decl_kinds.Proof Decl_kinds.Lemma let global_fix_kind = Decl_kinds.IsDefinition Decl_kinds.Fixpoint let goal_fix_kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Fixpoint open Tactics open Tacticals let id x = x let build_dependent_sum l = let rec aux names conttac conttype = function (n, t) :: ((_ :: _) as tl) -> let hyptype = substl names t in trace (spc () ++ str ("treating evar " ^ string_of_id n)); (try trace (str " assert: " ++ my_print_constr (Global.env ()) hyptype) with _ -> ()); let tac = assert_tac true (Name n) hyptype in let conttac = (fun cont -> conttac (tclTHENS tac ([intros; (tclTHENSEQ [constructor_tac (Some 1) 1 (Rawterm.ImplicitBindings [mkVar n]); cont]); ]))) in let conttype = (fun typ -> let tex = mkLambda (Name n, t, typ) in conttype (mkApp (Lazy.force ex_ind, [| t; tex |]))) in aux (mkVar n :: names) conttac conttype tl | (n, t) :: [] -> (conttac intros, conttype t) | [] -> raise (Invalid_argument "build_dependent_sum") in aux [] id id (List.rev l) open Proof_type open Tacexpr let mkProj1 a b c = mkApp (Lazy.force proj1, [| a; b; c |]) let mkProj2 a b c = mkApp (Lazy.force proj2, [| a; b; c |]) let mk_ex_pi1 a b c = mkApp (Lazy.force ex_pi1, [| a; b; c |]) let mk_ex_pi2 a b c = mkApp (Lazy.force ex_pi2, [| a; b; c |]) let mkSubset name typ prop = mkApp ((Lazy.force sig_).typ, [| typ; mkLambda (name, typ, prop) |]) let and_tac l hook = let andc = Coqlib.build_coq_and () in let rec aux ((accid, goal, tac, extract) as acc) = function | [] -> (* Singleton *) acc | (id, x, elgoal, eltac) :: tl -> let tac' = tclTHEN simplest_split (tclTHENLIST [tac; eltac]) in let proj = fun c -> mkProj2 goal elgoal c in let extract = List.map (fun (id, x, y, f) -> (id, x, y, (fun c -> f (mkProj1 goal elgoal c)))) extract in aux ((string_of_id id) ^ "_" ^ accid, mkApp (andc, [| goal; elgoal |]), tac', (id, x, elgoal, proj) :: extract) tl in let and_proof_id, and_goal, and_tac, and_extract = match l with | [] -> raise (Invalid_argument "and_tac: empty list of goals") | (hdid, x, hdg, hdt) :: tl -> aux (string_of_id hdid, hdg, hdt, [hdid, x, hdg, (fun c -> c)]) tl in let and_proofid = id_of_string (and_proof_id ^ "_and_proof") in Command.start_proof and_proofid goal_kind and_goal (hook (fun c -> List.map (fun (id, x, t, f) -> (id, x, t, f c)) and_extract)); trace (str "Started and proof"); Pfedit.by and_tac; trace (str "Applied and tac") let destruct_ex ext ex = let rec aux c acc = match kind_of_term c with App (f, args) -> (match kind_of_term f with Ind i when i = Term.destInd (Lazy.force ex_ind) && Array.length args = 2 -> let (dom, rng) = try (args.(0), args.(1)) with _ -> assert(false) in let pi1 = (mk_ex_pi1 dom rng acc) in let rng_body = match kind_of_term rng with Lambda (_, _, t) -> subst1 pi1 t | t -> rng in pi1 :: aux rng_body (mk_ex_pi2 dom rng acc) | _ -> [acc]) | _ -> [acc] in aux ex ext open Rawterm let list_mapi f = let rec aux i = function hd :: tl -> f i hd :: aux (succ i) tl | [] -> [] in aux 0 let rewrite_cases_aux (loc, po, tml, eqns) = let tml = list_mapi (fun i (c, (n, opt)) -> c, ((match n with Name id -> (match c with | RVar (_, id') when id = id' -> Name (id_of_string (string_of_id id ^ "'")) | _ -> n) | Anonymous -> Name (id_of_string ("x" ^ string_of_int i))), opt)) tml in let mkHole = RHole (dummy_loc, InternalHole) in let mkeq c n = RApp (dummy_loc, RRef (dummy_loc, (Lazy.force eqind_ref)), [mkHole; c; n]) in let eqs_types = List.map (fun (c, (n, _)) -> let id = match n with Name id -> id | _ -> assert false in let heqid = id_of_string ("Heq" ^ string_of_id id) in Name heqid, mkeq c (RVar (dummy_loc, id))) tml in let po = List.fold_right (fun (n,t) acc -> RProd (dummy_loc, Anonymous, t, acc)) eqs_types (match po with Some e -> e | None -> mkHole) in let eqns = List.map (fun (loc, idl, cpl, c) -> let c' = List.fold_left (fun acc (n, t) -> RLambda (dummy_loc, n, mkHole, acc)) c eqs_types in (loc, idl, cpl, c')) eqns in let mk_refl_equal c = RApp (dummy_loc, RRef (dummy_loc, Lazy.force refl_equal_ref), [mkHole; c]) in let refls = List.map (fun (c, _) -> mk_refl_equal c) tml in let case = RCases (loc,Some po,tml,eqns) in let app = RApp (dummy_loc, case, refls) in app let rec rewrite_cases c = match c with RCases _ -> let c' = map_rawconstr rewrite_cases c in (match c' with | RCases (x, y, z, w) -> rewrite_cases_aux (x,y,z,w) | _ -> assert(false)) | _ -> map_rawconstr rewrite_cases c let rewrite_cases env c = let c' = rewrite_cases c in let _ = trace (str "Rewrote cases: " ++ spc () ++ my_print_rawconstr env c') in c' let list_mapi f = let rec aux i = function hd :: tl -> f i hd :: aux (succ i) tl | [] -> [] in aux 0 open Rawterm let rewrite_cases_aux (loc, po, tml, eqns) = let tml' = list_mapi (fun i (c, (n, opt)) -> c, ((match n with Name id -> (match c with | RVar (_, id') when id = id' -> id, (id_of_string (string_of_id id ^ "Heq_id")) | RVar (_, id') -> id', id | _ -> id_of_string (string_of_id id ^ "Heq_id"), id) | Anonymous -> let str = "Heq_id" ^ string_of_int i in id_of_string str, id_of_string (str ^ "'")), opt)) tml in let mkHole = RHole (dummy_loc, InternalHole) in let mkCoerceCast c = RCast (dummy_loc, c, CastCoerce, mkHole) in let mkeq c n = RApp (dummy_loc, RRef (dummy_loc, (Lazy.force eqind_ref)), [mkHole; c; n]) in let eqs_types = List.map (fun (c, ((id, id'), _)) -> let heqid = id_of_string ("Heq" ^ string_of_id id) in Name heqid, mkeq (RVar (dummy_loc, id')) c) tml' in let po = List.fold_right (fun (n,t) acc -> RProd (dummy_loc, Anonymous, t, acc)) eqs_types (match po with Some e -> e | None -> mkHole) in let eqns = List.map (fun (loc, idl, cpl, c) -> let c' = List.fold_left (fun acc (n, t) -> RLambda (dummy_loc, n, mkHole, acc)) c eqs_types in (loc, idl, cpl, c')) eqns in let mk_refl_equal c = RApp (dummy_loc, RRef (dummy_loc, Lazy.force refl_equal_ref), [mkHole; c]) in let refls = List.map (fun (c, ((id, _), _)) -> mk_refl_equal (mkCoerceCast c)) tml' in let tml'' = List.map (fun (c, ((id, id'), opt)) -> c, (Name id', opt)) tml' in let case = RCases (loc,Some po,tml'',eqns) in let app = RApp (dummy_loc, case, refls) in (* let letapp = List.fold_left (fun acc (c, ((id, id'), opt)) -> RLetIn (dummy_loc, Name id, c, acc)) *) (* app tml' *) (* in *) app let rec rewrite_cases c = match c with RCases _ -> let c' = map_rawconstr rewrite_cases c in (match c' with | RCases (x, y, z, w) -> rewrite_cases_aux (x,y,z,w) | _ -> assert(false)) | _ -> map_rawconstr rewrite_cases c let rewrite_cases env c = let c' = rewrite_cases c in let _ = trace (str "Rewrote cases: " ++ spc () ++ my_print_rawconstr env c') in c' let id_of_name = function Name n -> n | Anonymous -> raise (Invalid_argument "id_of_name") let definition_message id = Options.if_verbose message ((string_of_id id) ^ " is defined") let recursive_message v = match Array.length v with | 0 -> error "no recursive definition" | 1 -> (Printer.pr_global v.(0) ++ str " is recursively defined") | _ -> hov 0 (prvect_with_sep pr_coma Printer.pr_global v ++ spc () ++ str "are recursively defined") (* Solve an obligation using tactics, return the corresponding proof term *) let solve_by_tac ev t = debug 1 (str "Solving goal using tactics: " ++ Evd.pr_evar_info ev); let goal = Proof_trees.mk_goal ev.evar_hyps ev.evar_concl None in let ts = Tacmach.mk_pftreestate goal in let solved_state = Tacmach.solve_pftreestate t ts in let c = Tacmach.extract_pftreestate solved_state in debug 1 (str "Term constructed in solve by tac: " ++ my_print_constr (Global.env ()) c); c let rec string_of_list sep f = function [] -> "" | x :: [] -> f x | x :: ((y :: _) as tl) -> f x ^ sep ^ string_of_list sep f tl