Set Implicit Arguments. Notation "'fun' { x : A | P } => Q" := (fun x:{x:A|P} => Q) (at level 200, x ident, right associativity). Notation "( x & ? )" := (@exist _ _ x _) : core_scope. Notation " ! " := (False_rect _ _). Definition ex_pi1 (A : Prop) (P : A -> Prop) (t : ex P) : A. intros. induction t. exact x. Defined. Lemma ex_pi2 : forall (A : Prop) (P : A -> Prop) (t : ex P), P (ex_pi1 t). intros A P. dependent inversion t. simpl. exact p. Defined. Notation "` t" := (proj1_sig t) (at level 100) : core_scope. Notation "'forall' { x : A | P } , Q" := (forall x:{x:A|P}, Q) (at level 200, x ident, right associativity). Lemma subset_simpl : forall (A : Set) (P : A -> Prop) (t : sig P), P (` t). Proof. intros. induction t. simpl ; auto. Qed. Ltac destruct_one_pair := match goal with | [H : (ex _) |- _] => destruct H | [H : (ex2 _) |- _] => destruct H | [H : (sig _) |- _] => destruct H | [H : (_ /\ _) |- _] => destruct H end. Ltac destruct_exists := repeat (destruct_one_pair) . Ltac subtac_simpl := simpl ; intros ; destruct_exists ; simpl in * ; try subst ; auto with arith. (* Destructs calls to f in hypothesis or conclusion, useful if f creates a subset object *) Ltac destruct_call f := match goal with | H : ?T |- _ => match T with context [f ?x ?y ?z] => destruct (f x y z) | context [f ?x ?y] => destruct (f x y) | context [f ?x] => destruct (f x) end | |- ?T => match T with context [f ?x ?y ?z] => let n := fresh "H" in set (n:=f x y z); destruct n | context [f ?x ?y] => let n := fresh "H" in set (n:=f x y); destruct n | context [f ?x] => let n := fresh "H" in set (n:=f x); destruct n end end. Extraction Inline proj1_sig. Extract Inductive unit => "unit" [ "()" ]. Extract Inductive bool => "bool" [ "true" "false" ]. Extract Inductive sumbool => "bool" [ "true" "false" ]. Extract Inductive prod => "pair" [ "" ]. Extract Inductive sigT => "pair" [ "" ]. Require Export ProofIrrelevance.