(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R->R) (ropp : R->R). Variable (rdiv : R -> R -> R) (rinv : R -> R). Variable req : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). Notation "x - y " := (rsub x y). Notation "x / y" := (rdiv x y). Notation "- x" := (ropp x). Notation "/ x" := (rinv x). Notation "x == y" := (req x y) (at level 70, no associativity). (* Equality properties *) Variable Rsth : Setoid_Theory R req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable SRinv_ext : forall p q, p == q -> / p == / q. (* Field properties *) Record almost_field_theory : Prop := mk_afield { AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req; AF_1_neq_0 : ~ 1 == 0; AFdiv_def : forall p q, p / q == p * / q; AFinv_l : forall p, ~ p == 0 -> / p * p == 1 }. Section AlmostField. Variable AFth : almost_field_theory. Let ARth := AFth.(AF_AR). Let rI_neq_rO := AFth.(AF_1_neq_0). Let rdiv_def := AFth.(AFdiv_def). Let rinv_l := AFth.(AFinv_l). (* Coefficients *) Variable C: Type. Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C). Variable ceqb : C->C->bool. Variable phi : C -> R. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. Lemma ceqb_rect : forall c1 c2 (A:Type) (x y:A) (P:A->Type), (phi c1 == phi c2 -> P x) -> P y -> P (if ceqb c1 c2 then x else y). Proof. intros. generalize (fun h => X (morph_eq CRmorph c1 c2 h)). case (ceqb c1 c2); auto. Qed. (* C notations *) Notation "x +! y" := (cadd x y) (at level 50). Notation "x *! y " := (cmul x y) (at level 40). Notation "x -! y " := (csub x y) (at level 50). Notation "-! x" := (copp x) (at level 35). Notation " x ?=! y" := (ceqb x y) (at level 70, no associativity). Notation "[ x ]" := (phi x) (at level 0). (* Usefull tactics *) Add Setoid R req Rsth as R_set1. Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. Add Morphism rinv : rinv_ext. exact SRinv_ext. Qed. Let eq_trans := Setoid.Seq_trans _ _ Rsth. Let eq_sym := Setoid.Seq_sym _ _ Rsth. Let eq_refl := Setoid.Seq_refl _ _ Rsth. Hint Resolve eq_refl rdiv_def rinv_l rI_neq_rO CRmorph.(morph1) . Hint Resolve (Rmul_ext Reqe) (Rmul_ext Reqe) (Radd_ext Reqe) (ARsub_ext Rsth Reqe ARth) (Ropp_ext Reqe) SRinv_ext. Hint Resolve (ARadd_0_l ARth) (ARadd_comm ARth) (ARadd_assoc ARth) (ARmul_1_l ARth) (ARmul_0_l ARth) (ARmul_comm ARth) (ARmul_assoc ARth) (ARdistr_l ARth) (ARopp_mul_l ARth) (ARopp_add ARth) (ARsub_def ARth) . Notation NPEeval := (PEeval rO radd rmul rsub ropp phi). Notation Nnorm := (norm cO cI cadd cmul csub copp ceqb). Notation NPphi_dev := (Pphi_dev rO rI radd rmul cO cI ceqb phi). (* add abstract semi-ring to help with some proofs *) Add Ring Rring : (ARth_SRth ARth). (* additional ring properties *) Lemma rsub_0_l : forall r, 0 - r == - r. intros; rewrite (ARsub_def ARth) in |- *; ring. Qed. Lemma rsub_0_r : forall r, r - 0 == r. intros; rewrite (ARsub_def ARth) in |- *. rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring. Qed. (*************************************************************************** Properties of division ***************************************************************************) Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p. intros p q H. rewrite rdiv_def in |- *. transitivity (/ q * q * p); [ ring | idtac ]. rewrite rinv_l in |- *; auto. Qed. Hint Resolve rdiv_simpl . Theorem SRdiv_ext: forall p1 p2, p1 == p2 -> forall q1 q2, q1 == q2 -> p1 / q1 == p2 / q2. intros p1 p2 H q1 q2 H0. transitivity (p1 * / q1); auto. transitivity (p2 * / q2); auto. Qed. Hint Resolve SRdiv_ext . Add Morphism rdiv : rdiv_ext. exact SRdiv_ext. Qed. Lemma rmul_reg_l : forall p q1 q2, ~ p == 0 -> p * q1 == p * q2 -> q1 == q2. intros. rewrite <- (@rdiv_simpl q1 p) in |- *; trivial. rewrite <- (@rdiv_simpl q2 p) in |- *; trivial. repeat rewrite rdiv_def in |- *. repeat rewrite (ARmul_assoc ARth) in |- *. auto. Qed. Theorem field_is_integral_domain : forall r1 r2, ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0. Proof. red in |- *; intros. apply H0. transitivity (1 * r2); auto. transitivity (/ r1 * r1 * r2); auto. rewrite <- (ARmul_assoc ARth) in |- *. rewrite H1 in |- *. apply ARmul_0_r with (1 := Rsth) (2 := ARth). Qed. Theorem ropp_neq_0 : forall r, ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0. intros. setoid_replace (- r) with (- (1) * r). apply field_is_integral_domain; trivial. rewrite <- (ARopp_mul_l ARth) in |- *. rewrite (ARmul_1_l ARth) in |- *. reflexivity. Qed. Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1. intros. rewrite (AFdiv_def AFth) in |- *. rewrite (ARmul_comm ARth) in |- *. apply (AFinv_l AFth). trivial. Qed. Theorem rdiv1: forall r, r == r / 1. intros r; transitivity (1 * (r / 1)); auto. Qed. Theorem rdiv2: forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. rewrite rdiv_simpl in |- *; trivial. rewrite (ARdistr_r Rsth Reqe ARth) in |- *. apply (Radd_ext Reqe). transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. transitivity (r2 * (r4 * (r3 / r4))); auto. transitivity (r2 * r3); auto. Qed. Theorem rdiv2b: forall r1 r2 r3 r4 r5, ~ (r2*r5) == 0 -> ~ (r4*r5) == 0 -> r1 / (r2*r5) + r3 / (r4*r5) == (r1 * r4 + r3 * r2) / (r2 * (r4 * r5)). Proof. intros r1 r2 r3 r4 r5 H H0. assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring). assert (HH4: ~ r2 * (r4 * r5) == 0) by complete (repeat apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * (r4 * r5)); trivial. rewrite rdiv_simpl in |- *; trivial. rewrite (ARdistr_r Rsth Reqe ARth) in |- *. apply (Radd_ext Reqe). transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ]. transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ]. Qed. Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2. intros r1 r2. transitivity (- (r1 * / r2)); auto. transitivity (- r1 * / r2); auto. Qed. Hint Resolve rdiv5 . Theorem rdiv3: forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4). intros r1 r2 r3 r4 H H0. assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). transitivity (r1 / r2 + - (r3 / r4)); auto. transitivity (r1 / r2 + - r3 / r4); auto. transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)); auto. apply rdiv2; auto. apply SRdiv_ext; auto. transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto. Qed. Theorem rdiv3b: forall r1 r2 r3 r4 r5, ~ (r2 * r5) == 0 -> ~ (r4 * r5) == 0 -> r1 / (r2*r5) - r3 / (r4*r5) == (r1 * r4 - r3 * r2) / (r2 * (r4 * r5)). Proof. intros r1 r2 r3 r4 r5 H H0. transitivity (r1 / (r2 * r5) + - (r3 / (r4 * r5))); auto. transitivity (r1 / (r2 * r5) + - r3 / (r4 * r5)); auto. transitivity ((r1 * r4 + - r3 * r2) / (r2 * (r4 * r5))). apply rdiv2b; auto; try ring. apply (SRdiv_ext); auto. transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto. Qed. Theorem rdiv6: forall r1 r2, ~ r1 == 0 -> ~ r2 == 0 -> / (r1 / r2) == r2 / r1. intros r1 r2 H H0. assert (~ r1 / r2 == 0) as Hk. intros H1; case H. transitivity (r2 * (r1 / r2)); auto. rewrite H1 in |- *; ring. apply rmul_reg_l with (r1 / r2); auto. transitivity (/ (r1 / r2) * (r1 / r2)); auto. transitivity 1; auto. repeat rewrite rdiv_def in |- *. transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ]. repeat rewrite rinv_l in |- *; auto. Qed. Hint Resolve rdiv6 . Theorem rdiv4: forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. rewrite rdiv_simpl in |- *; trivial. transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ]. repeat rewrite rdiv_simpl in |- *; trivial. Qed. Theorem rdiv7: forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r3 == 0 -> ~ r4 == 0 -> (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3). Proof. intros. rewrite (rdiv_def (r1 / r2)) in |- *. rewrite rdiv6 in |- *; trivial. apply rdiv4; trivial. Qed. Theorem rdiv8: forall r1 r2, ~ r2 == 0 -> r1 == 0 -> r1 / r2 == 0. intros r1 r2 H H0. transitivity (r1 * / r2); auto. transitivity (0 * / r2); auto. Qed. Theorem cross_product_eq : forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4. intros. transitivity (r1 / r2 * (r4 / r4)). rewrite rdiv_r_r in |- *; trivial. symmetry in |- *. apply (ARmul_1_r Rsth ARth). rewrite rdiv4 in |- *; trivial. rewrite H1 in |- *. rewrite (ARmul_comm ARth r2 r4) in |- *. rewrite <- rdiv4 in |- *; trivial. rewrite rdiv_r_r in |- *. trivial. apply (ARmul_1_r Rsth ARth). Qed. (*************************************************************************** Some equality test ***************************************************************************) Fixpoint positive_eq (p1 p2 : positive) {struct p1} : bool := match p1, p2 with xH, xH => true | xO p3, xO p4 => positive_eq p3 p4 | xI p3, xI p4 => positive_eq p3 p4 | _, _ => false end. Theorem positive_eq_correct: forall p1 p2, if positive_eq p1 p2 then p1 = p2 else p1 <> p2. intros p1; elim p1; (try (intros p2; case p2; simpl; auto; intros; discriminate)). intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4. generalize (rec p4); case (positive_eq p3 p4); auto. intros H1; apply f_equal with ( f := xI ); auto. intros H1 H2; case H1; injection H2; auto. intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4. generalize (rec p4); case (positive_eq p3 p4); auto. intros H1; apply f_equal with ( f := xO ); auto. intros H1 H2; case H1; injection H2; auto. Qed. (* equality test *) Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool := match e1, e2 with PEc c1, PEc c2 => ceqb c1 c2 | PEX p1, PEX p2 => positive_eq p1 p2 | PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false | PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false | PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false | PEopp e3, PEopp e4 => PExpr_eq e3 e4 | _, _ => false end. Theorem PExpr_eq_semi_correct: forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2. intros l e1; elim e1. intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)). intros c2; apply (morph_eq CRmorph). intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)). intros p2; generalize (positive_eq_correct p1 p2); case (positive_eq p1 p2); (try (intros; discriminate)); intros H; rewrite H; auto. intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); (try (intros; discriminate)); auto. intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); (try (intros; discriminate)); auto. intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); (try (intros; discriminate)); auto. intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))). intros e4; generalize (rec e4); case (PExpr_eq e3 e4); (try (intros; discriminate)); auto. Qed. (* add *) Definition NPEadd e1 e2 := match e1, e2 with PEc c1, PEc c2 => PEc (cadd c1 c2) | PEc c, _ => if ceqb c cO then e2 else PEadd e1 e2 | _, PEc c => if ceqb c cO then e1 else PEadd e1 e2 | _, _ => PEadd e1 e2 end. Theorem NPEadd_correct: forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2). Proof. intros l e1 e2. destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try rewrite (morph0 CRmorph) in |- *; try ring. apply (morph_add CRmorph). Qed. (* mul *) Definition NPEmul x y := match x, y with PEc c1, PEc c2 => PEc (cmul c1 c2) | PEc c, _ => if ceqb c cI then y else if ceqb c cO then PEc cO else PEmul x y | _, PEc c => if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y | _, _ => PEmul x y end. Theorem NPEmul_correct : forall l e1 e2, NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2). intros l e1 e2. destruct e1; destruct e2; simpl in |- *; try reflexivity; repeat apply ceqb_rect; try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try rewrite (morph0 CRmorph) in |- *; try rewrite (morph1 CRmorph) in |- *; try ring. apply (morph_mul CRmorph). Qed. (* sub *) Definition NPEsub e1 e2 := match e1, e2 with PEc c1, PEc c2 => PEc (csub c1 c2) | PEc c, _ => if ceqb c cO then PEopp e2 else PEsub e1 e2 | _, PEc c => if ceqb c cO then e1 else PEsub e1 e2 | _, _ => PEsub e1 e2 end. Theorem NPEsub_correct: forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2). intros l e1 e2. destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try rewrite (morph0 CRmorph) in |- *; try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). apply (morph_sub CRmorph). Qed. (* opp *) Definition NPEopp e1 := match e1 with PEc c1 => PEc (copp c1) | _ => PEopp e1 end. Theorem NPEopp_correct: forall l e1, NPEeval l (NPEopp e1) == NPEeval l (PEopp e1). intros l e1; case e1; simpl; auto. intros; apply (morph_opp CRmorph). Qed. (* simplification *) Fixpoint PExpr_simp (e : PExpr C) : PExpr C := match e with PEadd e1 e2 => NPEadd (PExpr_simp e1) (PExpr_simp e2) | PEmul e1 e2 => NPEmul (PExpr_simp e1) (PExpr_simp e2) | PEsub e1 e2 => NPEsub (PExpr_simp e1) (PExpr_simp e2) | PEopp e1 => NPEopp (PExpr_simp e1) | _ => e end. Theorem PExpr_simp_correct: forall l e, NPEeval l (PExpr_simp e) == NPEeval l e. intros l e; elim e; simpl; auto. intros e1 He1 e2 He2. transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto. apply NPEadd_correct. simpl; auto. intros e1 He1 e2 He2. transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))); auto. apply NPEsub_correct. simpl; auto. intros e1 He1 e2 He2. transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto. apply NPEmul_correct. simpl; auto. intros e1 He1. transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto. apply NPEopp_correct. simpl; auto. Qed. (**************************************************************************** Datastructure ***************************************************************************) (* The input: syntax of a field expression *) Inductive FExpr : Type := FEc: C -> FExpr | FEX: positive -> FExpr | FEadd: FExpr -> FExpr -> FExpr | FEsub: FExpr -> FExpr -> FExpr | FEmul: FExpr -> FExpr -> FExpr | FEopp: FExpr -> FExpr | FEinv: FExpr -> FExpr | FEdiv: FExpr -> FExpr -> FExpr . Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R := match pe with | FEc c => phi c | FEX x => BinList.nth 0 x l | FEadd x y => FEeval l x + FEeval l y | FEsub x y => FEeval l x - FEeval l y | FEmul x y => FEeval l x * FEeval l y | FEopp x => - FEeval l x | FEinv x => / FEeval l x | FEdiv x y => FEeval l x / FEeval l y end. (* The result of the normalisation *) Record linear : Type := mk_linear { num : PExpr C; denum : PExpr C; condition : list (PExpr C) }. (*************************************************************************** Semantics and properties of side condition ***************************************************************************) Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop := match le with | nil => True | e1 :: nil => ~ req (PEeval rO radd rmul rsub ropp phi l e1) rO | e1 :: l1 => ~ req (PEeval rO radd rmul rsub ropp phi l e1) rO /\ PCond l l1 end. Theorem PCond_cons_inv_l : forall l a l1, PCond l (a::l1) -> ~ NPEeval l a == 0. intros l a l1 H. destruct l1; simpl in H |- *; trivial. destruct H; trivial. Qed. Theorem PCond_cons_inv_r : forall l a l1, PCond l (a :: l1) -> PCond l l1. intros l a l1 H. destruct l1; simpl in H |- *; trivial. destruct H; trivial. Qed. Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1. intros l l1 l2; elim l1; simpl app in |- *. simpl in |- *; auto. destruct l0; simpl in *. destruct l2; firstorder. firstorder. Qed. Theorem PCond_app_inv_r: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l2. intros l l1 l2; elim l1; simpl app; auto. intros a l0 H H0; apply H; apply PCond_cons_inv_r with ( 1 := H0 ). Qed. (* An unsatisfiable condition: issued when a division by zero is detected *) Definition absurd_PCond := cons (PEc cO) nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. unfold absurd_PCond in |- *; simpl in |- *. red in |- *; intros. apply H. apply (morph0 CRmorph). Qed. (*************************************************************************** Normalisation ***************************************************************************) Fixpoint isIn (e1 e2: PExpr C) {struct e2}: option (PExpr C) := match e2 with | PEmul e3 e4 => match isIn e1 e3 with Some e5 => Some (NPEmul e5 e4) | None => match isIn e1 e4 with | Some e5 => Some (NPEmul e3 e5) | None => None end end | _ => if PExpr_eq e1 e2 then Some (PEc cI) else None end. Theorem isIn_correct: forall l e1 e2, match isIn e1 e2 with (Some e3) => NPEeval l e2 == NPEeval l (NPEmul e1 e3) | _ => True end. Proof. intros l e1 e2; elim e2; simpl; auto. intros c; generalize (PExpr_eq_semi_correct l e1 (PEc c)); case (PExpr_eq e1 (PEc c)); simpl; auto; intros H. rewrite NPEmul_correct; simpl; auto. rewrite H; auto; simpl. rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto. intros p; generalize (PExpr_eq_semi_correct l e1 (PEX C p)); case (PExpr_eq e1 (PEX C p)); simpl; auto; intros H. rewrite NPEmul_correct; simpl; auto. rewrite H; auto; simpl. rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto. intros p Hrec p1 Hrec1. generalize (PExpr_eq_semi_correct l e1 (PEadd p p1)); case (PExpr_eq e1 (PEadd p p1)); simpl; auto; intros H. rewrite NPEmul_correct; simpl; auto. rewrite H; auto; simpl. rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto. intros p Hrec p1 Hrec1. generalize (PExpr_eq_semi_correct l e1 (PEsub p p1)); case (PExpr_eq e1 (PEsub p p1)); simpl; auto; intros H. rewrite NPEmul_correct; simpl; auto. rewrite H; auto; simpl. rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto. intros p; case (isIn e1 p). intros p2 Hrec p1 Hrec1. rewrite Hrec; auto; simpl. repeat (rewrite NPEmul_correct; simpl; auto). intros _ p1; case (isIn e1 p1); auto. intros p2 H; rewrite H. repeat (rewrite NPEmul_correct; simpl; auto). ring. intros p; generalize (PExpr_eq_semi_correct l e1 (PEopp p)); case (PExpr_eq e1 (PEopp p)); simpl; auto; intros H. rewrite NPEmul_correct; simpl; auto. rewrite H; auto; simpl. rewrite (morph1 CRmorph); rewrite (ARmul_1_r Rsth ARth); auto. Qed. Record rsplit : Type := mk_rsplit { rsplit_left : PExpr C; rsplit_common : PExpr C; rsplit_right : PExpr C}. (* Stupid name clash *) Let left := rsplit_left. Let right := rsplit_right. Let common := rsplit_common. Fixpoint split (e1 e2: PExpr C) {struct e1}: rsplit := match e1 with | PEmul e3 e4 => let r1 := split e3 e2 in let r2 := split e4 (right r1) in mk_rsplit (NPEmul (left r1) (left r2)) (NPEmul (common r1) (common r2)) (right r2) | _ => match isIn e1 e2 with Some e3 => mk_rsplit (PEc cI) e1 e3 | None => mk_rsplit e1 (PEc cI) e2 end end. Theorem split_correct: forall l e1 e2, NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2)) (common (split e1 e2))) /\ NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2)) (common (split e1 e2))). Proof. intros l e1; elim e1; simpl; auto. intros c e2; generalize (isIn_correct l (PEc c) e2); case (isIn (PEc c) e2); auto; intros p; [intros Hp1; rewrite Hp1 | idtac]; simpl left; simpl common; simpl right; auto; repeat rewrite NPEmul_correct; simpl; split; try rewrite (morph1 CRmorph); ring. intros p e2; generalize (isIn_correct l (PEX C p) e2); case (isIn (PEX C p) e2); auto; intros p1; [intros Hp1; rewrite Hp1 | idtac]; simpl left; simpl common; simpl right; auto; repeat rewrite NPEmul_correct; simpl; split; try rewrite (morph1 CRmorph); ring. intros p1 _ p2 _ e2; generalize (isIn_correct l (PEadd p1 p2) e2); case (isIn (PEadd p1 p2) e2); auto; intros p; [intros Hp1; rewrite Hp1 | idtac]; simpl left; simpl common; simpl right; auto; repeat rewrite NPEmul_correct; simpl; split; try rewrite (morph1 CRmorph); ring. intros p1 _ p2 _ e2; generalize (isIn_correct l (PEsub p1 p2) e2); case (isIn (PEsub p1 p2) e2); auto; intros p; [intros Hp1; rewrite Hp1 | idtac]; simpl left; simpl common; simpl right; auto; repeat rewrite NPEmul_correct; simpl; split; try rewrite (morph1 CRmorph); ring. intros p1 Hp1 p2 Hp2 e2. repeat rewrite NPEmul_correct; simpl; split. case (Hp1 e2); case (Hp2 (right (split p1 e2))). intros tmp1 _ tmp2 _; rewrite tmp1; rewrite tmp2. repeat rewrite NPEmul_correct; simpl. ring. case (Hp1 e2); case (Hp2 (right (split p1 e2))). intros _ tmp1 _ tmp2; rewrite tmp2; repeat rewrite NPEmul_correct; simpl. rewrite tmp1. repeat rewrite NPEmul_correct; simpl. ring. intros p _ e2; generalize (isIn_correct l (PEopp p) e2); case (isIn (PEopp p) e2); auto; intros p1; [intros Hp1; rewrite Hp1 | idtac]; simpl left; simpl common; simpl right; auto; repeat rewrite NPEmul_correct; simpl; split; try rewrite (morph1 CRmorph); ring. Qed. Theorem split_correct_l: forall l e1 e2, NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2)) (common (split e1 e2))). Proof. intros l e1 e2; case (split_correct l e1 e2); auto. Qed. Theorem split_correct_r: forall l e1 e2, NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2)) (common (split e1 e2))). Proof. intros l e1 e2; case (split_correct l e1 e2); auto. Qed. Fixpoint Fnorm (e : FExpr) : linear := match e with | FEc c => mk_linear (PEc c) (PEc cI) nil | FEX x => mk_linear (PEX C x) (PEc cI) nil | FEadd e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear (NPEadd (NPEmul (num x) (right s)) (NPEmul (num y) (left s))) (NPEmul (left s) (NPEmul (right s) (common s))) (condition x ++ condition y) | FEsub e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear (NPEsub (NPEmul (num x) (right s)) (NPEmul (num y) (left s))) (NPEmul (left s) (NPEmul (right s) (common s))) (condition x ++ condition y) | FEmul e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in mk_linear (NPEmul (num x) (num y)) (NPEmul (denum x) (denum y)) (condition x ++ condition y) | FEopp e1 => let x := Fnorm e1 in mk_linear (NPEopp (num x)) (denum x) (condition x) | FEinv e1 => let x := Fnorm e1 in mk_linear (denum x) (num x) (num x :: condition x) | FEdiv e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in mk_linear (NPEmul (num x) (denum y)) (NPEmul (denum x) (num y)) (num y :: condition x ++ condition y) end. (* Example *) (* Eval compute in (Fnorm (FEdiv (FEc cI) (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))). *) Theorem Pcond_Fnorm: forall l e, PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0. intros l e; elim e. simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. simpl denum in |- *. rewrite NPEmul_correct in |- *. simpl in |- *. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))). rewrite NPEmul_correct; simpl; rewrite HH; ring. intros HH; case Hrec2; auto. apply PCond_app_inv_r with (1 := Hcond). rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. simpl denum in |- *. rewrite NPEmul_correct in |- *. simpl in |- *. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))). rewrite NPEmul_correct; simpl; rewrite HH; ring. intros HH; case Hrec2; auto. apply PCond_app_inv_r with (1 := Hcond). rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. simpl denum in |- *. rewrite NPEmul_correct in |- *. simpl in |- *. apply field_is_integral_domain. apply Hrec1. apply PCond_app_inv_l with (1 := Hcond). apply Hrec2. apply PCond_app_inv_r with (1 := Hcond). intros e1 Hrec1 Hcond. simpl condition in Hcond. simpl denum in |- *. auto. intros e1 Hrec1 Hcond. simpl condition in Hcond. simpl denum in |- *. apply PCond_cons_inv_l with (1:=Hcond). intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. simpl denum in |- *. rewrite NPEmul_correct in |- *. simpl in |- *. apply field_is_integral_domain. apply Hrec1. specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1. apply PCond_app_inv_l with (1 := Hcond1). apply PCond_cons_inv_l with (1:=Hcond). Qed. Hint Resolve Pcond_Fnorm. (*************************************************************************** Main theorem ***************************************************************************) Theorem Fnorm_FEeval_PEeval: forall l fe, PCond l (condition (Fnorm fe)) -> FEeval l fe == NPEeval l (num (Fnorm fe)) / NPEeval l (denum (Fnorm fe)). Proof. intros l fe; elim fe; simpl. intros c H; rewrite CRmorph.(morph1); apply rdiv1. intros p H; rewrite CRmorph.(morph1); apply rdiv1. intros e1 He1 e2 He2 HH. assert (HH1: PCond l (condition (Fnorm e1))). apply PCond_app_inv_l with ( 1 := HH ). assert (HH2: PCond l (condition (Fnorm e2))). apply PCond_app_inv_r with ( 1 := HH ). rewrite (He1 HH1); rewrite (He2 HH2). rewrite NPEadd_correct; simpl. repeat rewrite NPEmul_correct; simpl. generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))) (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))). repeat rewrite NPEmul_correct; simpl. intros U1 U2; rewrite U1; rewrite U2. apply rdiv2b; auto. rewrite <- U1; auto. rewrite <- U2; auto. intros e1 He1 e2 He2 HH. assert (HH1: PCond l (condition (Fnorm e1))). apply PCond_app_inv_l with ( 1 := HH ). assert (HH2: PCond l (condition (Fnorm e2))). apply PCond_app_inv_r with ( 1 := HH ). rewrite (He1 HH1); rewrite (He2 HH2). rewrite NPEsub_correct; simpl. repeat rewrite NPEmul_correct; simpl. generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))) (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))). repeat rewrite NPEmul_correct; simpl. intros U1 U2; rewrite U1; rewrite U2. apply rdiv3b; auto. rewrite <- U1; auto. rewrite <- U2; auto. intros e1 He1 e2 He2 HH. assert (HH1: PCond l (condition (Fnorm e1))). apply PCond_app_inv_l with ( 1 := HH ). assert (HH2: PCond l (condition (Fnorm e2))). apply PCond_app_inv_r with ( 1 := HH ). rewrite (He1 HH1); rewrite (He2 HH2). repeat rewrite NPEmul_correct; simpl. apply rdiv4; auto. intros e1 He1 HH. rewrite NPEopp_correct; simpl; rewrite (He1 HH); apply rdiv5; auto. intros e1 He1 HH. assert (HH1: PCond l (condition (Fnorm e1))). apply PCond_cons_inv_r with ( 1 := HH ). rewrite (He1 HH1); apply rdiv6; auto. apply PCond_cons_inv_l with ( 1 := HH ). intros e1 He1 e2 He2 HH. assert (HH1: PCond l (condition (Fnorm e1))). apply PCond_app_inv_l with (condition (Fnorm e2)). apply PCond_cons_inv_r with ( 1 := HH ). assert (HH2: PCond l (condition (Fnorm e2))). apply PCond_app_inv_r with (condition (Fnorm e1)). apply PCond_cons_inv_r with ( 1 := HH ). rewrite (He1 HH1); rewrite (He2 HH2). repeat rewrite NPEmul_correct;simpl. apply rdiv7; auto. apply PCond_cons_inv_l with ( 1 := HH ). Qed. Theorem Fnorm_crossproduct: forall l fe1 fe2, let nfe1 := Fnorm fe1 in let nfe2 := Fnorm fe2 in NPEeval l (PEmul (num nfe1) (denum nfe2)) == NPEeval l (PEmul (num nfe2) (denum nfe1)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2. rewrite Fnorm_FEeval_PEeval in |- *. apply PCond_app_inv_l with (1 := Hcond). rewrite Fnorm_FEeval_PEeval in |- *. apply PCond_app_inv_r with (1 := Hcond). apply cross_product_eq; trivial. apply Pcond_Fnorm. apply PCond_app_inv_l with (1 := Hcond). apply Pcond_Fnorm. apply PCond_app_inv_r with (1 := Hcond). Qed. (* Correctness lemmas of reflexive tactics *) Theorem Fnorm_correct: forall l fe, Peq ceqb (Nnorm (num (Fnorm fe))) (Pc cO) = true -> PCond l (condition (Fnorm fe)) -> FEeval l fe == 0. intros l fe H H1; apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe H1). apply rdiv8; auto. transitivity (NPEeval l (PEc cO)); auto. apply (ring_correct Rsth Reqe ARth CRmorph); auto. simpl; apply (morph0 CRmorph); auto. Qed. (* simplify a field expression into a fraction *) (* TODO: simplify when den is constant... *) Definition display_linear l num den := NPphi_dev l num / NPphi_dev l den. Theorem Pphi_dev_div_ok: forall l fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_linear l (Nnorm (num nfe)) (Nnorm (denum nfe)). Proof. intros l fe nfe eq_nfe H; subst nfe. apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H). unfold display_linear; apply SRdiv_ext; apply (Pphi_dev_ok Rsth Reqe ARth CRmorph); reflexivity. Qed. (* solving a field equation *) Theorem Field_correct : forall l fe1 fe2, forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> Peq ceqb (Nnorm (PEmul (num nfe1) (denum nfe2))) (Nnorm (PEmul (num nfe2) (denum nfe1))) = true -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros l fe1 fe2 nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2. apply Fnorm_crossproduct; trivial. apply (ring_correct Rsth Reqe ARth CRmorph); trivial. Qed. (* simplify a field equation : generate the crossproduct and simplify polynomials *) Theorem Field_simplify_eq_old_correct : forall l fe1 fe2 nfe1 nfe2, Fnorm fe1 = nfe1 -> Fnorm fe2 = nfe2 -> NPphi_dev l (Nnorm (PEmul (num nfe1) (denum nfe2))) == NPphi_dev l (Nnorm (PEmul (num nfe2) (denum nfe1))) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros l fe1 fe2 nfe1 nfe2 eq1 eq2 Hcrossprod Hcond; subst nfe1 nfe2. apply Fnorm_crossproduct; trivial. rewrite (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in |- *. rewrite (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in |- *. trivial. Qed. Theorem Field_simplify_eq_correct : forall l fe1 fe2, forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> NPphi_dev l (Nnorm (PEmul (num nfe1) (right den))) == NPphi_dev l (Nnorm (PEmul (num nfe2) (left den))) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. intros l fe1 fe2 nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den. apply Fnorm_crossproduct; trivial. simpl in |- *. elim (split_correct l (denum (Fnorm fe1)) (denum (Fnorm fe2))); intros. rewrite H in |- *. rewrite H0 in |- *. clear H H0. rewrite NPEmul_correct in |- *. rewrite NPEmul_correct in |- *. simpl in |- *. repeat rewrite (ARmul_assoc ARth) in |- *. rewrite <- (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in Hcrossprod. rewrite <- (Pphi_dev_gen_ok Rsth Reqe ARth CRmorph) in Hcrossprod. simpl in Hcrossprod. rewrite Hcrossprod in |- *. reflexivity. Qed. Section Fcons_impl. Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C). Hypothesis PCond_fcons_inv : forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := match l with | nil => m | cons a l1 => Fcons a (Fapp l1 m) end. Lemma fcons_correct : forall l l1, PCond l (Fapp l1 nil) -> PCond l l1. induction l1; simpl in |- *; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. destruct l1; auto. Qed. End Fcons_impl. Section Fcons_simpl. (* Some general simpifications of the condition: eliminate duplicates, split multiplications *) Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1) end. Theorem PFcons_fcons_inv: forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a l1; elim l1; simpl Fcons; auto. simpl; auto. intros a0 l0. generalize (PExpr_eq_semi_correct l a a0); case (PExpr_eq a a0). intros H H0 H1; split; auto. rewrite H; auto. generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. intros H H0 H1; assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)). split. generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. apply H0. generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto. generalize Hp; case l0; simpl; intuition. Qed. (* equality of normal forms rather than syntactic equality *) Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := match l with nil => cons e nil | cons a l1 => if Peq ceqb (Nnorm e) (Nnorm a) then l else cons a (Fcons0 e l1) end. Theorem PFcons0_fcons_inv: forall l a l1, PCond l (Fcons0 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a l1; elim l1; simpl Fcons0; auto. simpl; auto. intros a0 l0. generalize (ring_correct Rsth Reqe ARth CRmorph l a a0); case (Peq ceqb (Nnorm a) (Nnorm a0)). intros H H0 H1; split; auto. rewrite H; auto. generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. intros H H0 H1; assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)). split. generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. apply H0. generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto. generalize Hp; case l0; simpl; intuition. Qed. Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l) | _ => Fcons0 e l end. Theorem PFcons00_fcons_inv: forall l a l1, PCond l (Fcons00 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). intros p H p0 H0 l1 H1. simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. simpl in |- *. apply field_is_integral_domain; trivial. Qed. Definition Pcond_simpl_gen := fcons_correct _ PFcons00_fcons_inv. (* Specific case when the equality test of coefs is complete w.r.t. the field equality: non-zero coefs can be eliminated, and opposite can be simplified (if -1 <> 0) *) Hypothesis ceqb_complete : forall c1 c2, phi c1 == phi c2 -> ceqb c1 c2 = true. Lemma ceqb_rect_complete : forall c1 c2 (A:Type) (x y:A) (P:A->Type), (phi c1 == phi c2 -> P x) -> (~ phi c1 == phi c2 -> P y) -> P (if ceqb c1 c2 then x else y). Proof. intros. generalize (fun h => X (morph_eq CRmorph c1 c2 h)). generalize (@ceqb_complete c1 c2). case (c1 ?=! c2); auto; intros. apply X0. red in |- *; intro. absurd (false = true); auto; discriminate. Qed. Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := match e with PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l) | PEopp e => if ceqb (copp cI) cO then absurd_PCond else Fcons1 e l | PEc c => if ceqb c cO then absurd_PCond else l | _ => Fcons0 e l end. Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). simpl in |- *; intros c l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H0). split; trivial. rewrite <- (morph0 CRmorph) in |- *; trivial. intros p H p0 H0 l1 H1. simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. simpl in |- *. apply field_is_integral_domain; trivial. simpl in |- *; intros p H l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H1). destruct (H _ H1). split; trivial. apply ropp_neq_0; trivial. rewrite (morph_opp CRmorph) in H0. rewrite (morph1 CRmorph) in H0. rewrite (morph0 CRmorph) in H0. trivial. Qed. Definition Fcons2 e l := Fcons1 (PExpr_simp e) l. Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. unfold Fcons2 in |- *; intros l a l1 H; split; case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto. intros H1 H2 H3; case H1. transitivity (NPEeval l a); trivial. apply PExpr_simp_correct. Qed. Definition Pcond_simpl_complete := fcons_correct _ PFcons2_fcons_inv. End Fcons_simpl. Let Mpc := MPcond_map cO cI cadd cmul csub copp ceqb. Let Mp := MPcond_dev rO rI radd rmul req cO cI ceqb phi. Let Subst := PNSubstL cO cI cadd cmul ceqb. (* simplification + rewriting *) Theorem Field_subst_correct : forall l ul fe m n, PCond l (Fapp Fcons00 (condition (Fnorm fe)) nil) -> Mp (Mpc ul) l -> Peq ceqb (Subst (Nnorm (num (Fnorm fe))) (Mpc ul) m n) (Pc cO) = true -> FEeval l fe == 0. intros l ul fe m n H H1 H2. assert (H3 := (Pcond_simpl_gen _ _ H)). apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe (Pcond_simpl_gen _ _ H)). apply rdiv8; auto. rewrite (PNSubstL_dev_ok Rsth Reqe ARth CRmorph m n _ (num (Fnorm fe)) l H1). rewrite <-(Ring_polynom.Pphi_Pphi_dev Rsth Reqe ARth CRmorph). rewrite (fun x => Peq_ok Rsth Reqe CRmorph x (Pc cO)); auto. simpl; apply (morph0 CRmorph); auto. Qed. End AlmostField. Section FieldAndSemiField. Record field_theory : Prop := mk_field { F_R : ring_theory rO rI radd rmul rsub ropp req; F_1_neq_0 : ~ 1 == 0; Fdiv_def : forall p q, p / q == p * / q; Finv_l : forall p, ~ p == 0 -> / p * p == 1 }. Definition F2AF f := mk_afield (Rth_ARth Rsth Reqe f.(F_R)) f.(F_1_neq_0) f.(Fdiv_def) f.(Finv_l). Record semi_field_theory : Prop := mk_sfield { SF_SR : semi_ring_theory rO rI radd rmul req; SF_1_neq_0 : ~ 1 == 0; SFdiv_def : forall p q, p / q == p * / q; SFinv_l : forall p, ~ p == 0 -> / p * p == 1 }. End FieldAndSemiField. End MakeFieldPol. Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth (sf:semi_field_theory rO rI radd rmul rdiv rinv req) := mk_afield _ _ (SRth_ARth Rsth sf.(SF_SR)) sf.(SF_1_neq_0) sf.(SFdiv_def) sf.(SFinv_l). Section Complete. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable (rdiv : R -> R -> R) (rinv : R -> R). Variable req : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). Notation "x / y " := (rdiv x y). Notation "/ x" := (rinv x). Notation "x == y" := (req x y) (at level 70, no associativity). Variable Rsth : Setoid_Theory R req. Add Setoid R req Rsth as R_setoid3. Variable Reqe : ring_eq_ext radd rmul ropp req. Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed. Section AlmostField. Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req. Let ARth := AFth.(AF_AR). Let rI_neq_rO := AFth.(AF_1_neq_0). Let rdiv_def := AFth.(AFdiv_def). Let rinv_l := AFth.(AFinv_l). Hypothesis S_inj : forall x y, 1+x==1+y -> x==y. Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Lemma add_inj_r : forall p x y, gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y. intros p x y. elim p using Pind; simpl in |- *; intros. apply S_inj; trivial. apply H. apply S_inj. repeat rewrite (ARadd_assoc ARth) in |- *. rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial. Qed. Lemma gen_phiPOS_inj : forall x y, gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. intros x y. repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *. ElimPcompare x y; intro. intros. apply Pcompare_Eq_eq; trivial. intro. elim gen_phiPOS_not_0 with (y - x)%positive. apply add_inj_r with x. symmetry in |- *. rewrite (ARadd_0_r Rsth ARth) in |- *. rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. rewrite Pplus_minus in |- *; trivial. change Eq with (CompOpp Eq) in |- *. rewrite <- Pcompare_antisym in |- *; trivial. rewrite H in |- *; trivial. intro. elim gen_phiPOS_not_0 with (x - y)%positive. apply add_inj_r with y. rewrite (ARadd_0_r Rsth ARth) in |- *. rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. rewrite Pplus_minus in |- *; trivial. Qed. Lemma gen_phiN_inj : forall x y, gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. destruct x; destruct y; simpl in |- *; intros; trivial. elim gen_phiPOS_not_0 with p. symmetry in |- *. rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial. Qed. Lemma gen_phiN_complete : forall x y, gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> Neq_bool x y = true. intros. replace y with x. unfold Neq_bool in |- *. rewrite Ncompare_refl in |- *; trivial. apply gen_phiN_inj; trivial. Qed. End AlmostField. Section Field. Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req. Let Rth := Fth.(F_R). Let rI_neq_rO := Fth.(F_1_neq_0). Let rdiv_def := Fth.(Fdiv_def). Let rinv_l := Fth.(Finv_l). Let AFth := F2AF Rsth Reqe Fth. Let ARth := Rth_ARth Rsth Reqe Rth. Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y. intros. transitivity (x + (1 + - (1))). rewrite (Ropp_def Rth) in |- *. symmetry in |- *. apply (ARadd_0_r Rsth ARth). transitivity (y + (1 + - (1))). repeat rewrite <- (ARplus_assoc ARth) in |- *. repeat rewrite (ARadd_assoc ARth) in |- *. apply (Radd_ext Reqe). repeat rewrite <- (ARadd_comm ARth 1) in |- *. trivial. reflexivity. rewrite (Ropp_def Rth) in |- *. apply (ARadd_0_r Rsth ARth). Qed. Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Let gen_phiPOS_inject := gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0. Lemma gen_phiPOS_discr_sgn : forall x y, ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. red in |- *; intros. apply gen_phiPOS_not_0 with (y + x)%positive. rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Radd_ext Reqe); trivial. reflexivity. rewrite (same_gen Rsth Reqe ARth) in |- *. rewrite (same_gen Rsth Reqe ARth) in |- *. trivial. apply (Ropp_def Rth). Qed. Lemma gen_phiZ_inj : forall x y, gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. destruct x; destruct y; simpl in |- *; intros. trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth) in |- *. symmetry in |- *; trivial. elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth) in |- *. rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. rewrite <- H in |- *. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth) in |- *. trivial. rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial. elim gen_phiPOS_discr_sgn with (1 := H). elim gen_phiPOS_not_0 with p. rewrite (same_gen Rsth Reqe ARth) in |- *. rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. rewrite H in |- *. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_discr_sgn with p0 p. symmetry in |- *; trivial. replace p0 with p; trivial. apply gen_phiPOS_inject. rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *. rewrite H in |- *; trivial. reflexivity. Qed. Lemma gen_phiZ_complete : forall x y, gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> Zeq_bool x y = true. intros. replace y with x. unfold Zeq_bool in |- *. rewrite Zcompare_refl in |- *; trivial. apply gen_phiZ_inj; trivial. Qed. End Field. End Complete.