(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (0 <= x)%Z -> (0 <= y)%Z. intros x y H; rewrite H; auto with arith. Qed. Lemma OMEGA2 : forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x + y)%Z. exact Zplus_le_0_compat. Qed. Lemma OMEGA3 : forall x y k:Z, (k > 0)%Z -> x = (y * k)%Z -> x = 0%Z -> y = 0%Z. intros x y k H1 H2 H3; apply (Zmult_integral_l k); [ unfold not in |- *; intros H4; absurd (k > 0)%Z; [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate | assumption ] | rewrite <- H2; assumption ]. Qed. Lemma OMEGA4 : forall x y z:Z, (x > 0)%Z -> (y > x)%Z -> (z * y + x)%Z <> 0%Z. unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0)%Z; [ intros H4; cut (0 <= z * y + x)%Z; [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6; absurd (z * y + x > 0)%Z; [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate | apply Zle_gt_trans with x; [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x); apply Zplus_le_compat_r; rewrite Zmult_comm; generalize H4; unfold Zgt in |- *; case y; [ simpl in |- *; intros H7; discriminate H7 | intros p H7; rewrite <- (Zmult_0_r (Zpos p)); unfold Zle in |- *; rewrite Zcompare_mult_compat; exact H6 | simpl in |- *; intros p H7; discriminate H7 ] | assumption ] ] | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ] | apply Zgt_trans with x; [ assumption | assumption ] ]. Qed. Lemma OMEGA5 : forall x y z:Z, x = 0%Z -> y = 0%Z -> (x + y * z)%Z = 0%Z. intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith. Qed. Lemma OMEGA6 : forall x y z:Z, (0 <= x)%Z -> y = 0%Z -> (0 <= x + y * z)%Z. intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption. Qed. Lemma OMEGA7 : forall x y z t:Z, (z > 0)%Z -> (t > 0)%Z -> (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x * z + y * t)%Z. intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat; apply Zmult_gt_0_le_0_compat; assumption. Qed. Lemma OMEGA8 : forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> x = (- y)%Z -> x = 0%Z. intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1); [ intros H4; absurd (0 < x)%Z; [ change (0 >= x)%Z in |- *; apply Zle_ge; apply Zplus_le_reg_l with y; rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r; assumption | assumption ] | intros H4; rewrite H4; trivial with arith ]. Qed. Lemma OMEGA9 : forall x y z t:Z, y = 0%Z -> x = z -> (y + (- x + z) * t)%Z = 0%Z. intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l; rewrite Zplus_0_r; assumption. Qed. Lemma OMEGA10 : forall v c1 c2 l1 l2 k1 k2:Z, ((v * c1 + l1) * k1 + (v * c2 + l2) * k2)%Z = (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z. intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith. Qed. Lemma OMEGA11 : forall v1 c1 l1 l2 k1:Z, ((v1 * c1 + l1) * k1 + l2)%Z = (v1 * (c1 * k1) + (l1 * k1 + l2))%Z. intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; trivial with arith. Qed. Lemma OMEGA12 : forall v2 c2 l1 l2 k2:Z, (l1 + (v2 * c2 + l2) * k2)%Z = (v2 * (c2 * k2) + (l1 + l2 * k2))%Z. intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; rewrite Zplus_permute; trivial with arith. Qed. Lemma OMEGA13 : forall (v l1 l2:Z) (x:positive), (v * Zpos x + l1 + (v * Zneg x + l2))%Z = (l1 + l2)%Z. intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1); rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x)); rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r; trivial with arith. Qed. Lemma OMEGA14 : forall (v l1 l2:Z) (x:positive), (v * Zneg x + l1 + (v * Zpos x + l2))%Z = (l1 + l2)%Z. intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1); rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r; trivial with arith. Qed. Lemma OMEGA15 : forall v c1 c2 l1 l2 k2:Z, (v * c1 + l1 + (v * c2 + l2) * k2)%Z = (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z. intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith. Qed. Lemma OMEGA16 : forall v c l k:Z, ((v * c + l) * k)%Z = (v * (c * k) + l * k)%Z. intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; trivial with arith. Qed. Lemma OMEGA17 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0. unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; apply Zplus_reg_l with (y * z)%Z; rewrite Zplus_comm; rewrite H3; rewrite H2; auto with arith. Qed. Lemma OMEGA18 : forall x y k:Z, x = (y * k)%Z -> Zne x 0 -> Zne y 0. unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1; rewrite H3; auto with arith. Qed. Lemma OMEGA19 : forall x:Z, Zne x 0 -> (0 <= x + -1)%Z \/ (0 <= x * -1 + -1)%Z. unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x); [ intros H1; elim Zle_lt_or_eq with (1 := H1); [ intros H2; left; change (0 <= Zpred x)%Z in |- *; apply Zsucc_le_reg; rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption | intros H2; absurd (x = 0%Z); auto with arith ] | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm; apply Zle_left; apply Zsucc_le_reg; simpl in |- *; apply Zlt_le_succ; auto with arith ]. Qed. Lemma OMEGA20 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0. unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3; simpl in H3; rewrite Zplus_0_r in H3; trivial with arith. Qed. Definition fast_Zplus_sym (x y:Z) (P:Z -> Prop) (H:P (y + x)%Z) := eq_ind_r P H (Zplus_comm x y). Definition fast_Zplus_assoc_r (n m p:Z) (P:Z -> Prop) (H:P (n + (m + p))%Z) := eq_ind_r P H (Zplus_assoc_reverse n m p). Definition fast_Zplus_assoc_l (n m p:Z) (P:Z -> Prop) (H:P (n + m + p)%Z) := eq_ind_r P H (Zplus_assoc n m p). Definition fast_Zplus_permute (n m p:Z) (P:Z -> Prop) (H:P (m + (n + p))%Z) := eq_ind_r P H (Zplus_permute n m p). Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2:Z) (P:Z -> Prop) (H:P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z) := eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2). Definition fast_OMEGA11 (v1 c1 l1 l2 k1:Z) (P:Z -> Prop) (H:P (v1 * (c1 * k1) + (l1 * k1 + l2))%Z) := eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1). Definition fast_OMEGA12 (v2 c2 l1 l2 k2:Z) (P:Z -> Prop) (H:P (v2 * (c2 * k2) + (l1 + l2 * k2))%Z) := eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2). Definition fast_OMEGA15 (v c1 c2 l1 l2 k2:Z) (P:Z -> Prop) (H:P (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z) := eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2). Definition fast_OMEGA16 (v c l k:Z) (P:Z -> Prop) (H:P (v * (c * k) + l * k)%Z) := eq_ind_r P H (OMEGA16 v c l k). Definition fast_OMEGA13 (v l1 l2:Z) (x:positive) (P:Z -> Prop) (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA13 v l1 l2 x). Definition fast_OMEGA14 (v l1 l2:Z) (x:positive) (P:Z -> Prop) (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA14 v l1 l2 x). Definition fast_Zred_factor0 (x:Z) (P:Z -> Prop) (H:P (x * 1)%Z) := eq_ind_r P H (Zred_factor0 x). Definition fast_Zopp_one (x:Z) (P:Z -> Prop) (H:P (x * -1)%Z) := eq_ind_r P H (Zopp_eq_mult_neg_1 x). Definition fast_Zmult_sym (x y:Z) (P:Z -> Prop) (H:P (y * x)%Z) := eq_ind_r P H (Zmult_comm x y). Definition fast_Zopp_Zplus (x y:Z) (P:Z -> Prop) (H:P (- x + - y)%Z) := eq_ind_r P H (Zopp_plus_distr x y). Definition fast_Zopp_Zopp (x:Z) (P:Z -> Prop) (H:P x) := eq_ind_r P H (Zopp_involutive x). Definition fast_Zopp_Zmult_r (x y:Z) (P:Z -> Prop) (H:P (x * - y)%Z) := eq_ind_r P H (Zopp_mult_distr_r x y). Definition fast_Zmult_plus_distr (n m p:Z) (P:Z -> Prop) (H:P (n * p + m * p)%Z) := eq_ind_r P H (Zmult_plus_distr_l n m p). Definition fast_Zmult_Zopp_left (x y:Z) (P:Z -> Prop) (H:P (x * - y)%Z) := eq_ind_r P H (Zmult_opp_comm x y). Definition fast_Zmult_assoc_r (n m p:Z) (P:Z -> Prop) (H:P (n * (m * p))%Z) := eq_ind_r P H (Zmult_assoc_reverse n m p). Definition fast_Zred_factor1 (x:Z) (P:Z -> Prop) (H:P (x * 2)%Z) := eq_ind_r P H (Zred_factor1 x). Definition fast_Zred_factor2 (x y:Z) (P:Z -> Prop) (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor2 x y). Definition fast_Zred_factor3 (x y:Z) (P:Z -> Prop) (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor3 x y). Definition fast_Zred_factor4 (x y z:Z) (P:Z -> Prop) (H:P (x * (y + z))%Z) := eq_ind_r P H (Zred_factor4 x y z). Definition fast_Zred_factor5 (x y:Z) (P:Z -> Prop) (H:P y) := eq_ind_r P H (Zred_factor5 x y). Definition fast_Zred_factor6 (x:Z) (P:Z -> Prop) (H:P (x + 0)%Z) := eq_ind_r P H (Zred_factor6 x).