(* ========================================================================= *) (* - This code originates from John Harrison's HOL LIGHT 2.20 *) (* (see file LICENSE.sos for license, copyright and disclaimer) *) (* - Laurent Théry (thery@sophia.inria.fr) has isolated the HOL *) (* independent bits *) (* - Frédéric Besson (fbesson@irisa.fr) is using it to feed micromega *) (* - Addition of a csdp cache by the Coq development team *) (* ========================================================================= *) (* ========================================================================= *) (* Nonlinear universal reals procedure using SOS decomposition. *) (* ========================================================================= *) open Num;; open List;; let debugging = ref false;; exception Sanity;; exception Unsolvable;; (* ------------------------------------------------------------------------- *) (* Comparisons that are reflexive on NaN and also short-circuiting. *) (* ------------------------------------------------------------------------- *) let (=?) = fun x y -> Pervasives.compare x y = 0;; let ( Pervasives.compare x y < 0;; let (<=?) = fun x y -> Pervasives.compare x y <= 0;; let (>?) = fun x y -> Pervasives.compare x y > 0;; let (>=?) = fun x y -> Pervasives.compare x y >= 0;; (* ------------------------------------------------------------------------- *) (* Combinators. *) (* ------------------------------------------------------------------------- *) let (o) = fun f g x -> f(g x);; (* ------------------------------------------------------------------------- *) (* Some useful functions on "num" type. *) (* ------------------------------------------------------------------------- *) let num_0 = Int 0 and num_1 = Int 1 and num_2 = Int 2 and num_10 = Int 10;; let pow2 n = power_num num_2 (Int n);; let pow10 n = power_num num_10 (Int n);; let numdom r = let r' = Ratio.normalize_ratio (ratio_of_num r) in num_of_big_int(Ratio.numerator_ratio r'), num_of_big_int(Ratio.denominator_ratio r');; let numerator = (o) fst numdom and denominator = (o) snd numdom;; let gcd_num n1 n2 = num_of_big_int(Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2));; let lcm_num x y = if x =/ num_0 & y =/ num_0 then num_0 else abs_num((x */ y) // gcd_num x y);; (* ------------------------------------------------------------------------- *) (* List basics. *) (* ------------------------------------------------------------------------- *) let rec el n l = if n = 0 then hd l else el (n - 1) (tl l);; (* ------------------------------------------------------------------------- *) (* Various versions of list iteration. *) (* ------------------------------------------------------------------------- *) let rec itlist f l b = match l with [] -> b | (h::t) -> f h (itlist f t b);; let rec end_itlist f l = match l with [] -> failwith "end_itlist" | [x] -> x | (h::t) -> f h (end_itlist f t);; let rec itlist2 f l1 l2 b = match (l1,l2) with ([],[]) -> b | (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b) | _ -> failwith "itlist2";; (* ------------------------------------------------------------------------- *) (* All pairs arising from applying a function over two lists. *) (* ------------------------------------------------------------------------- *) let rec allpairs f l1 l2 = match l1 with h1::t1 -> itlist (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2) | [] -> [];; (* ------------------------------------------------------------------------- *) (* String operations (surely there is a better way...) *) (* ------------------------------------------------------------------------- *) let implode l = itlist (^) l "";; let explode s = let rec exap n l = if n < 0 then l else exap (n - 1) ((String.sub s n 1)::l) in exap (String.length s - 1) [];; (* ------------------------------------------------------------------------- *) (* Attempting function or predicate applications. *) (* ------------------------------------------------------------------------- *) let can f x = try (f x; true) with Failure _ -> false;; (* ------------------------------------------------------------------------- *) (* Repetition of a function. *) (* ------------------------------------------------------------------------- *) let rec funpow n f x = if n < 1 then x else funpow (n-1) f (f x);; (* ------------------------------------------------------------------------- *) (* term?? *) (* ------------------------------------------------------------------------- *) type vname = string;; type term = | Zero | Const of Num.num | Var of vname | Inv of term | Opp of term | Add of (term * term) | Sub of (term * term) | Mul of (term * term) | Div of (term * term) | Pow of (term * int);; (* ------------------------------------------------------------------------- *) (* Data structure for Positivstellensatz refutations. *) (* ------------------------------------------------------------------------- *) type positivstellensatz = Axiom_eq of int | Axiom_le of int | Axiom_lt of int | Rational_eq of num | Rational_le of num | Rational_lt of num | Square of term | Monoid of int list | Eqmul of term * positivstellensatz | Sum of positivstellensatz * positivstellensatz | Product of positivstellensatz * positivstellensatz;; (* ------------------------------------------------------------------------- *) (* Replication and sequences. *) (* ------------------------------------------------------------------------- *) let rec replicate x n = if n < 1 then [] else x::(replicate x (n - 1));; let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);; (* ------------------------------------------------------------------------- *) (* Various useful list operations. *) (* ------------------------------------------------------------------------- *) let rec forall p l = match l with [] -> true | h::t -> p(h) & forall p t;; let rec tryfind f l = match l with [] -> failwith "tryfind" | (h::t) -> try f h with Failure _ -> tryfind f t;; let index x = let rec ind n l = match l with [] -> failwith "index" | (h::t) -> if x =? h then n else ind (n + 1) t in ind 0;; (* ------------------------------------------------------------------------- *) (* "Set" operations on lists. *) (* ------------------------------------------------------------------------- *) let rec mem x lis = match lis with [] -> false | (h::t) -> x =? h or mem x t;; let insert x l = if mem x l then l else x::l;; let union l1 l2 = itlist insert l1 l2;; let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1;; (* ------------------------------------------------------------------------- *) (* Merging and bottom-up mergesort. *) (* ------------------------------------------------------------------------- *) let rec merge ord l1 l2 = match l1 with [] -> l2 | h1::t1 -> match l2 with [] -> l1 | h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2) else h2::(merge ord l1 t2);; (* ------------------------------------------------------------------------- *) (* Common measure predicates to use with "sort". *) (* ------------------------------------------------------------------------- *) let increasing f x y = f x ? f y;; (* ------------------------------------------------------------------------- *) (* Zipping, unzipping etc. *) (* ------------------------------------------------------------------------- *) let rec zip l1 l2 = match (l1,l2) with ([],[]) -> [] | (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2) | _ -> failwith "zip";; let rec unzip = function [] -> [],[] | ((a,b)::rest) -> let alist,blist = unzip rest in (a::alist,b::blist);; (* ------------------------------------------------------------------------- *) (* Iterating functions over lists. *) (* ------------------------------------------------------------------------- *) let rec do_list f l = match l with [] -> () | (h::t) -> (f h; do_list f t);; (* ------------------------------------------------------------------------- *) (* Sorting. *) (* ------------------------------------------------------------------------- *) let rec sort cmp lis = match lis with [] -> [] | piv::rest -> let r,l = partition (cmp piv) rest in (sort cmp l) @ (piv::(sort cmp r));; (* ------------------------------------------------------------------------- *) (* Removing adjacent (NB!) equal elements from list. *) (* ------------------------------------------------------------------------- *) let rec uniq l = match l with x::(y::_ as t) -> let t' = uniq t in if x =? y then t' else if t'==t then l else x::t' | _ -> l;; (* ------------------------------------------------------------------------- *) (* Convert list into set by eliminating duplicates. *) (* ------------------------------------------------------------------------- *) let setify s = uniq (sort (<=?) s);; (* ------------------------------------------------------------------------- *) (* Polymorphic finite partial functions via Patricia trees. *) (* *) (* The point of this strange representation is that it is canonical (equal *) (* functions have the same encoding) yet reasonably efficient on average. *) (* *) (* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10). *) (* ------------------------------------------------------------------------- *) type ('a,'b)func = Empty | Leaf of int * ('a*'b)list | Branch of int * int * ('a,'b)func * ('a,'b)func;; (* ------------------------------------------------------------------------- *) (* Undefined function. *) (* ------------------------------------------------------------------------- *) let undefined = Empty;; (* ------------------------------------------------------------------------- *) (* In case of equality comparison worries, better use this. *) (* ------------------------------------------------------------------------- *) let is_undefined f = match f with Empty -> true | _ -> false;; (* ------------------------------------------------------------------------- *) (* Operation analagous to "map" for lists. *) (* ------------------------------------------------------------------------- *) let mapf = let rec map_list f l = match l with [] -> [] | (x,y)::t -> (x,f(y))::(map_list f t) in let rec mapf f t = match t with Empty -> Empty | Leaf(h,l) -> Leaf(h,map_list f l) | Branch(p,b,l,r) -> Branch(p,b,mapf f l,mapf f r) in mapf;; (* ------------------------------------------------------------------------- *) (* Operations analogous to "fold" for lists. *) (* ------------------------------------------------------------------------- *) let foldl = let rec foldl_list f a l = match l with [] -> a | (x,y)::t -> foldl_list f (f a x y) t in let rec foldl f a t = match t with Empty -> a | Leaf(h,l) -> foldl_list f a l | Branch(p,b,l,r) -> foldl f (foldl f a l) r in foldl;; let foldr = let rec foldr_list f l a = match l with [] -> a | (x,y)::t -> f x y (foldr_list f t a) in let rec foldr f t a = match t with Empty -> a | Leaf(h,l) -> foldr_list f l a | Branch(p,b,l,r) -> foldr f l (foldr f r a) in foldr;; (* ------------------------------------------------------------------------- *) (* Redefinition and combination. *) (* ------------------------------------------------------------------------- *) let (|->),combine = let ldb x y = let z = x lxor y in z land (-z) in let newbranch p1 t1 p2 t2 = let b = ldb p1 p2 in let p = p1 land (b - 1) in if p1 land b = 0 then Branch(p,b,t1,t2) else Branch(p,b,t2,t1) in let rec define_list (x,y as xy) l = match l with (a,b as ab)::t -> if x =? a then xy::t else if x [xy] and combine_list op z l1 l2 = match (l1,l2) with [],_ -> l2 | _,[] -> l1 | ((x1,y1 as xy1)::t1,(x2,y2 as xy2)::t2) -> if x1 ) x y = let k = Hashtbl.hash x in let rec upd t = match t with Empty -> Leaf (k,[x,y]) | Leaf(h,l) -> if h = k then Leaf(h,define_list (x,y) l) else newbranch h t k (Leaf(k,[x,y])) | Branch(p,b,l,r) -> if k land (b - 1) <> p then newbranch p t k (Leaf(k,[x,y])) else if k land b = 0 then Branch(p,b,upd l,r) else Branch(p,b,l,upd r) in upd in let rec combine op z t1 t2 = match (t1,t2) with Empty,_ -> t2 | _,Empty -> t1 | Leaf(h1,l1),Leaf(h2,l2) -> if h1 = h2 then let l = combine_list op z l1 l2 in if l = [] then Empty else Leaf(h1,l) else newbranch h1 t1 h2 t2 | (Leaf(k,lis) as lf),(Branch(p,b,l,r) as br) | (Branch(p,b,l,r) as br),(Leaf(k,lis) as lf) -> if k land (b - 1) = p then if k land b = 0 then let l' = combine op z lf l in if is_undefined l' then r else Branch(p,b,l',r) else let r' = combine op z lf r in if is_undefined r' then l else Branch(p,b,l,r') else newbranch k lf p br | Branch(p1,b1,l1,r1),Branch(p2,b2,l2,r2) -> if b1 < b2 then if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2 else if p2 land b1 = 0 then let l = combine op z l1 t2 in if is_undefined l then r1 else Branch(p1,b1,l,r1) else let r = combine op z r1 t2 in if is_undefined r then l1 else Branch(p1,b1,l1,r) else if b2 < b1 then if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2 else if p1 land b2 = 0 then let l = combine op z t1 l2 in if is_undefined l then r2 else Branch(p2,b2,l,r2) else let r = combine op z t1 r2 in if is_undefined r then l2 else Branch(p2,b2,l2,r) else if p1 = p2 then let l = combine op z l1 l2 and r = combine op z r1 r2 in if is_undefined l then r else if is_undefined r then l else Branch(p1,b1,l,r) else newbranch p1 t1 p2 t2 in (|->),combine;; (* ------------------------------------------------------------------------- *) (* Special case of point function. *) (* ------------------------------------------------------------------------- *) let (|=>) = fun x y -> (x |-> y) undefined;; (* ------------------------------------------------------------------------- *) (* Grab an arbitrary element. *) (* ------------------------------------------------------------------------- *) let rec choose t = match t with Empty -> failwith "choose: completely undefined function" | Leaf(h,l) -> hd l | Branch(b,p,t1,t2) -> choose t1;; (* ------------------------------------------------------------------------- *) (* Application. *) (* ------------------------------------------------------------------------- *) let applyd = let rec apply_listd l d x = match l with (a,b)::t -> if x =? a then b else if x >? a then apply_listd t d x else d x | [] -> d x in fun f d x -> let k = Hashtbl.hash x in let rec look t = match t with Leaf(h,l) when h = k -> apply_listd l d x | Branch(p,b,l,r) -> look (if k land b = 0 then l else r) | _ -> d x in look f;; let apply f = applyd f (fun x -> failwith "apply");; let tryapplyd f a d = applyd f (fun x -> d) a;; let defined f x = try apply f x; true with Failure _ -> false;; (* ------------------------------------------------------------------------- *) (* Undefinition. *) (* ------------------------------------------------------------------------- *) let undefine = let rec undefine_list x l = match l with (a,b as ab)::t -> if x =? a then t else if x [] in fun x -> let k = Hashtbl.hash x in let rec und t = match t with Leaf(h,l) when h = k -> let l' = undefine_list x l in if l' == l then t else if l' = [] then Empty else Leaf(h,l') | Branch(p,b,l,r) when k land (b - 1) = p -> if k land b = 0 then let l' = und l in if l' == l then t else if is_undefined l' then r else Branch(p,b,l',r) else let r' = und r in if r' == r then t else if is_undefined r' then l else Branch(p,b,l,r') | _ -> t in und;; (* ------------------------------------------------------------------------- *) (* Mapping to sorted-list representation of the graph, domain and range. *) (* ------------------------------------------------------------------------- *) let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);; let dom f = setify(foldl (fun a x y -> x::a) [] f);; let ran f = setify(foldl (fun a x y -> y::a) [] f);; (* ------------------------------------------------------------------------- *) (* Turn a rational into a decimal string with d sig digits. *) (* ------------------------------------------------------------------------- *) let decimalize = let rec normalize y = if abs_num y =/ Int 1 then normalize (y // Int 10) + 1 else 0 in fun d x -> if x =/ Int 0 then "0.0" else let y = abs_num x in let e = normalize y in let z = pow10(-e) */ y +/ Int 1 in let k = round_num(pow10 d */ z) in (if x a | h::t -> itern (k + 1) t f (f h k a);; let rec iter (m,n) f a = if n < m then a else iter (m+1,n) f (f m a);; (* ------------------------------------------------------------------------- *) (* The main types. *) (* ------------------------------------------------------------------------- *) type vector = int*(int,num)func;; type matrix = (int*int)*(int*int,num)func;; type monomial = (vname,int)func;; type poly = (monomial,num)func;; (* ------------------------------------------------------------------------- *) (* Assignment avoiding zeros. *) (* ------------------------------------------------------------------------- *) let (|-->) x y a = if y =/ Int 0 then a else (x |-> y) a;; (* ------------------------------------------------------------------------- *) (* This can be generic. *) (* ------------------------------------------------------------------------- *) let element (d,v) i = tryapplyd v i (Int 0);; let mapa f (d,v) = d,foldl (fun a i c -> (i |--> f(c)) a) undefined v;; let is_zero (d,v) = match v with Empty -> true | _ -> false;; (* ------------------------------------------------------------------------- *) (* Vectors. Conventionally indexed 1..n. *) (* ------------------------------------------------------------------------- *) let vector_0 n = (n,undefined:vector);; let dim (v:vector) = fst v;; let vector_const c n = if c =/ Int 0 then vector_0 n else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);; let vector_1 = vector_const (Int 1);; let vector_cmul c (v:vector) = let n = dim v in if c =/ Int 0 then vector_0 n else n,mapf (fun x -> c */ x) (snd v);; let vector_neg (v:vector) = (fst v,mapf minus_num (snd v) :vector);; let vector_add (v1:vector) (v2:vector) = let m = dim v1 and n = dim v2 in if m <> n then failwith "vector_add: incompatible dimensions" else (n,combine (+/) (fun x -> x =/ Int 0) (snd v1) (snd v2) :vector);; let vector_sub v1 v2 = vector_add v1 (vector_neg v2);; let vector_of_list l = let n = length l in (n,itlist2 (|->) (1--n) l undefined :vector);; (* ------------------------------------------------------------------------- *) (* Matrices; again rows and columns indexed from 1. *) (* ------------------------------------------------------------------------- *) let matrix_0 (m,n) = ((m,n),undefined:matrix);; let dimensions (m:matrix) = fst m;; let matrix_const c (m,n as mn) = if m <> n then failwith "matrix_const: needs to be square" else if c =/ Int 0 then matrix_0 mn else (mn,itlist (fun k -> (k,k) |-> c) (1--n) undefined :matrix);; let matrix_1 = matrix_const (Int 1);; let matrix_cmul c (m:matrix) = let (i,j) = dimensions m in if c =/ Int 0 then matrix_0 (i,j) else (i,j),mapf (fun x -> c */ x) (snd m);; let matrix_neg (m:matrix) = (dimensions m,mapf minus_num (snd m) :matrix);; let matrix_add (m1:matrix) (m2:matrix) = let d1 = dimensions m1 and d2 = dimensions m2 in if d1 <> d2 then failwith "matrix_add: incompatible dimensions" else (d1,combine (+/) (fun x -> x =/ Int 0) (snd m1) (snd m2) :matrix);; let matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);; let row k (m:matrix) = let i,j = dimensions m in (j, foldl (fun a (i,j) c -> if i = k then (j |-> c) a else a) undefined (snd m) : vector);; let column k (m:matrix) = let i,j = dimensions m in (i, foldl (fun a (i,j) c -> if j = k then (i |-> c) a else a) undefined (snd m) : vector);; let transp (m:matrix) = let i,j = dimensions m in ((j,i),foldl (fun a (i,j) c -> ((j,i) |-> c) a) undefined (snd m) :matrix);; let diagonal (v:vector) = let n = dim v in ((n,n),foldl (fun a i c -> ((i,i) |-> c) a) undefined (snd v) : matrix);; let matrix_of_list l = let m = length l in if m = 0 then matrix_0 (0,0) else let n = length (hd l) in (m,n),itern 1 l (fun v i -> itern 1 v (fun c j -> (i,j) |-> c)) undefined;; (* ------------------------------------------------------------------------- *) (* Monomials. *) (* ------------------------------------------------------------------------- *) let monomial_eval assig (m:monomial) = foldl (fun a x k -> a */ power_num (apply assig x) (Int k)) (Int 1) m;; let monomial_1 = (undefined:monomial);; let monomial_var x = (x |=> 1 :monomial);; let (monomial_mul:monomial->monomial->monomial) = combine (+) (fun x -> false);; let monomial_pow (m:monomial) k = if k = 0 then monomial_1 else mapf (fun x -> k * x) m;; let monomial_divides (m1:monomial) (m2:monomial) = foldl (fun a x k -> tryapplyd m2 x 0 >= k & a) true m1;; let monomial_div (m1:monomial) (m2:monomial) = let m = combine (+) (fun x -> x = 0) m1 (mapf (fun x -> -x) m2) in if foldl (fun a x k -> k >= 0 & a) true m then m else failwith "monomial_div: non-divisible";; let monomial_degree x (m:monomial) = tryapplyd m x 0;; let monomial_lcm (m1:monomial) (m2:monomial) = (itlist (fun x -> x |-> max (monomial_degree x m1) (monomial_degree x m2)) (union (dom m1) (dom m2)) undefined :monomial);; let monomial_multidegree (m:monomial) = foldl (fun a x k -> k + a) 0 m;; let monomial_variables m = dom m;; (* ------------------------------------------------------------------------- *) (* Polynomials. *) (* ------------------------------------------------------------------------- *) let eval assig (p:poly) = foldl (fun a m c -> a +/ c */ monomial_eval assig m) (Int 0) p;; let poly_0 = (undefined:poly);; let poly_isconst (p:poly) = foldl (fun a m c -> m = monomial_1 & a) true p;; let poly_var x = ((monomial_var x) |=> Int 1 :poly);; let poly_const c = if c =/ Int 0 then poly_0 else (monomial_1 |=> c);; let poly_cmul c (p:poly) = if c =/ Int 0 then poly_0 else mapf (fun x -> c */ x) p;; let poly_neg (p:poly) = (mapf minus_num p :poly);; let poly_add (p1:poly) (p2:poly) = (combine (+/) (fun x -> x =/ Int 0) p1 p2 :poly);; let poly_sub p1 p2 = poly_add p1 (poly_neg p2);; let poly_cmmul (c,m) (p:poly) = if c =/ Int 0 then poly_0 else if m = monomial_1 then mapf (fun d -> c */ d) p else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p;; let poly_mul (p1:poly) (p2:poly) = foldl (fun a m c -> poly_add (poly_cmmul (c,m) p2) a) poly_0 p1;; let poly_div (p1:poly) (p2:poly) = if not(poly_isconst p2) then failwith "poly_div: non-constant" else let c = eval undefined p2 in if c =/ Int 0 then failwith "poly_div: division by zero" else poly_cmul (Int 1 // c) p1;; let poly_square p = poly_mul p p;; let rec poly_pow p k = if k = 0 then poly_const (Int 1) else if k = 1 then p else let q = poly_square(poly_pow p (k / 2)) in if k mod 2 = 1 then poly_mul p q else q;; let poly_exp p1 p2 = if not(poly_isconst p2) then failwith "poly_exp: not a constant" else poly_pow p1 (Num.int_of_num (eval undefined p2));; let degree x (p:poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p;; let multidegree (p:poly) = foldl (fun a m c -> max (monomial_multidegree m) a) 0 p;; let poly_variables (p:poly) = foldr (fun m c -> union (monomial_variables m)) p [];; (* ------------------------------------------------------------------------- *) (* Order monomials for human presentation. *) (* ------------------------------------------------------------------------- *) let humanorder_varpow (x1,k1) (x2,k2) = x1 < x2 or (x1 = x2 & k1 > k2);; let humanorder_monomial = let rec ord l1 l2 = match (l1,l2) with _,[] -> true | [],_ -> false | h1::t1,h2::t2 -> humanorder_varpow h1 h2 or (h1 = h2 & ord t1 t2) in fun m1 m2 -> m1 = m2 or ord (sort humanorder_varpow (graph m1)) (sort humanorder_varpow (graph m2));; (* ------------------------------------------------------------------------- *) (* Conversions to strings. *) (* ------------------------------------------------------------------------- *) let string_of_vector min_size max_size (v:vector) = let n_raw = dim v in if n_raw = 0 then "[]" else let n = max min_size (min n_raw max_size) in let xs = map ((o) string_of_num (element v)) (1--n) in "[" ^ end_itlist (fun s t -> s ^ ", " ^ t) xs ^ (if n_raw > max_size then ", ...]" else "]");; let string_of_matrix max_size (m:matrix) = let i_raw,j_raw = dimensions m in let i = min max_size i_raw and j = min max_size j_raw in let rstr = map (fun k -> string_of_vector j j (row k m)) (1--i) in "["^end_itlist(fun s t -> s^";\n "^t) rstr ^ (if j > max_size then "\n ...]" else "]");; let string_of_vname (v:vname): string = (v: string);; let rec string_of_term t = match t with Opp t1 -> "(- " ^ string_of_term t1 ^ ")" | Add (t1, t2) -> "(" ^ (string_of_term t1) ^ " + " ^ (string_of_term t2) ^ ")" | Sub (t1, t2) -> "(" ^ (string_of_term t1) ^ " - " ^ (string_of_term t2) ^ ")" | Mul (t1, t2) -> "(" ^ (string_of_term t1) ^ " * " ^ (string_of_term t2) ^ ")" | Inv t1 -> "(/ " ^ string_of_term t1 ^ ")" | Div (t1, t2) -> "(" ^ (string_of_term t1) ^ " / " ^ (string_of_term t2) ^ ")" | Pow (t1, n1) -> "(" ^ (string_of_term t1) ^ " ^ " ^ (string_of_int n1) ^ ")" | Zero -> "0" | Var v -> "x" ^ (string_of_vname v) | Const x -> string_of_num x;; let string_of_varpow x k = if k = 1 then string_of_vname x else string_of_vname x^"^"^string_of_int k;; let string_of_monomial m = if m = monomial_1 then "1" else let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a) (sort humanorder_varpow (graph m)) [] in end_itlist (fun s t -> s^"*"^t) vps;; let string_of_cmonomial (c,m) = if m = monomial_1 then string_of_num c else if c =/ Int 1 then string_of_monomial m else string_of_num c ^ "*" ^ string_of_monomial m;; let string_of_poly (p:poly) = if p = poly_0 then "<<0>>" else let cms = sort (fun (m1,_) (m2,_) -> humanorder_monomial m1 m2) (graph p) in let s = List.fold_left (fun a (m,c) -> if c >";; (* ------------------------------------------------------------------------- *) (* Printers. *) (* ------------------------------------------------------------------------- *) let print_vector v = Format.print_string(string_of_vector 0 20 v);; let print_matrix m = Format.print_string(string_of_matrix 20 m);; let print_monomial m = Format.print_string(string_of_monomial m);; let print_poly m = Format.print_string(string_of_poly m);; (* #install_printer print_vector;; #install_printer print_matrix;; #install_printer print_monomial;; #install_printer print_poly;; *) (* ------------------------------------------------------------------------- *) (* Conversion from term. *) (* ------------------------------------------------------------------------- *) let rec poly_of_term t = match t with Zero -> poly_0 | Const n -> poly_const n | Var x -> poly_var x | Opp t1 -> poly_neg (poly_of_term t1) | Inv t1 -> let p = poly_of_term t1 in if poly_isconst p then poly_const(Int 1 // eval undefined p) else failwith "poly_of_term: inverse of non-constant polyomial" | Add (l, r) -> poly_add (poly_of_term l) (poly_of_term r) | Sub (l, r) -> poly_sub (poly_of_term l) (poly_of_term r) | Mul (l, r) -> poly_mul (poly_of_term l) (poly_of_term r) | Div (l, r) -> let p = poly_of_term l and q = poly_of_term r in if poly_isconst q then poly_cmul (Int 1 // eval undefined q) p else failwith "poly_of_term: division by non-constant polynomial" | Pow (t, n) -> poly_pow (poly_of_term t) n;; (* ------------------------------------------------------------------------- *) (* String of vector (just a list of space-separated numbers). *) (* ------------------------------------------------------------------------- *) let sdpa_of_vector (v:vector) = let n = dim v in let strs = map (o (decimalize 20) (element v)) (1--n) in end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";; (* ------------------------------------------------------------------------- *) (* String for block diagonal matrix numbered k. *) (* ------------------------------------------------------------------------- *) let sdpa_of_blockdiagonal k m = let pfx = string_of_int k ^" " in let ents = foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in let entss = sort (increasing fst) ents in itlist (fun ((b,i,j),c) a -> pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) entss "";; (* ------------------------------------------------------------------------- *) (* String for a matrix numbered k, in SDPA sparse format. *) (* ------------------------------------------------------------------------- *) let sdpa_of_matrix k (m:matrix) = let pfx = string_of_int k ^ " 1 " in let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a) (snd m) [] in let mss = sort (increasing fst) ms in itlist (fun ((i,j),c) a -> pfx ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) mss "";; (* ------------------------------------------------------------------------- *) (* String in SDPA sparse format for standard SDP problem: *) (* *) (* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *) (* Minimize obj_1 * v_1 + ... obj_m * v_m *) (* ------------------------------------------------------------------------- *) let sdpa_of_problem comment obj mats = let m = length mats - 1 and n,_ = dimensions (hd mats) in "\"" ^ comment ^ "\"\n" ^ string_of_int m ^ "\n" ^ "1\n" ^ string_of_int n ^ "\n" ^ sdpa_of_vector obj ^ itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a) (1--length mats) mats "";; (* ------------------------------------------------------------------------- *) (* More parser basics. *) (* ------------------------------------------------------------------------- *) exception Noparse;; let isspace,issep,isbra,issymb,isalpha,isnum,isalnum = let charcode s = Char.code(String.get s 0) in let spaces = " \t\n\r" and separators = ",;" and brackets = "()[]{}" and symbs = "\\!@#$%^&*-+|\\<=>/?~.:" and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ" and nums = "0123456789" in let allchars = spaces^separators^brackets^symbs^alphas^nums in let csetsize = itlist ((o) max charcode) (explode allchars) 256 in let ctable = Array.make csetsize 0 in do_list (fun c -> Array.set ctable (charcode c) 1) (explode spaces); do_list (fun c -> Array.set ctable (charcode c) 2) (explode separators); do_list (fun c -> Array.set ctable (charcode c) 4) (explode brackets); do_list (fun c -> Array.set ctable (charcode c) 8) (explode symbs); do_list (fun c -> Array.set ctable (charcode c) 16) (explode alphas); do_list (fun c -> Array.set ctable (charcode c) 32) (explode nums); let isspace c = Array.get ctable (charcode c) = 1 and issep c = Array.get ctable (charcode c) = 2 and isbra c = Array.get ctable (charcode c) = 4 and issymb c = Array.get ctable (charcode c) = 8 and isalpha c = Array.get ctable (charcode c) = 16 and isnum c = Array.get ctable (charcode c) = 32 and isalnum c = Array.get ctable (charcode c) >= 16 in isspace,issep,isbra,issymb,isalpha,isnum,isalnum;; let (||) parser1 parser2 input = try parser1 input with Noparse -> parser2 input;; let (++) parser1 parser2 input = let result1,rest1 = parser1 input in let result2,rest2 = parser2 rest1 in (result1,result2),rest2;; let rec many prs input = try let result,next = prs input in let results,rest = many prs next in (result::results),rest with Noparse -> [],input;; let (>>) prs treatment input = let result,rest = prs input in treatment(result),rest;; let fix err prs input = try prs input with Noparse -> failwith (err ^ " expected");; let rec listof prs sep err = prs ++ many (sep ++ fix err prs >> snd) >> (fun (h,t) -> h::t);; let possibly prs input = try let x,rest = prs input in [x],rest with Noparse -> [],input;; let some p = function [] -> raise Noparse | (h::t) -> if p h then (h,t) else raise Noparse;; let a tok = some (fun item -> item = tok);; let rec atleast n prs i = (if n <= 0 then many prs else prs ++ atleast (n - 1) prs >> (fun (h,t) -> h::t)) i;; let finished input = if input = [] then 0,input else failwith "Unparsed input";; let word s = end_itlist (fun p1 p2 -> (p1 ++ p2) >> (fun (s,t) -> s^t)) (map a (explode s));; let token s = many (some isspace) ++ word s ++ many (some isspace) >> (fun ((_,t),_) -> t);; let decimal = let numeral = some isnum in let decimalint = atleast 1 numeral >> ((o) Num.num_of_string implode) in let decimalfrac = atleast 1 numeral >> (fun s -> Num.num_of_string(implode s) // pow10 (length s)) in let decimalsig = decimalint ++ possibly (a "." ++ decimalfrac >> snd) >> (function (h,[]) -> h | (h,[x]) -> h +/ x | _ -> failwith "decimalsig") in let signed prs = a "-" ++ prs >> ((o) minus_num snd) || a "+" ++ prs >> snd || prs in let exponent = (a "e" || a "E") ++ signed decimalint >> snd in signed decimalsig ++ possibly exponent >> (function (h,[]) -> h | (h,[x]) -> h */ power_num (Int 10) x | _ -> failwith "exponent");; let mkparser p s = let x,rst = p(explode s) in if rst = [] then x else failwith "mkparser: unparsed input";; let parse_decimal = mkparser decimal;; (* ------------------------------------------------------------------------- *) (* Parse back a vector. *) (* ------------------------------------------------------------------------- *) let parse_csdpoutput = let rec skipupto dscr prs inp = (dscr ++ prs >> snd || some (fun c -> true) ++ skipupto dscr prs >> snd) inp in let ignore inp = (),[] in let csdpoutput = (decimal ++ many(a " " ++ decimal >> snd) >> (fun (h,t) -> h::t)) ++ (a " " ++ a "\n" ++ ignore) >> ((o) vector_of_list fst) in mkparser csdpoutput;; (* ------------------------------------------------------------------------- *) (* CSDP parameters; so far I'm sticking with the defaults. *) (* ------------------------------------------------------------------------- *) let csdp_default_parameters = "axtol=1.0e-8 atytol=1.0e-8 objtol=1.0e-8 pinftol=1.0e8 dinftol=1.0e8 maxiter=100 minstepfrac=0.9 maxstepfrac=0.97 minstepp=1.0e-8 minstepd=1.0e-8 usexzgap=1 tweakgap=0 affine=0 printlevel=1 ";; let csdp_params = csdp_default_parameters;; (* ------------------------------------------------------------------------- *) (* The same thing with CSDP. *) (* Modified by the Coq development team to use a cache *) (* ------------------------------------------------------------------------- *) let buffer_add_line buff line = Buffer.add_string buff line; Buffer.add_char buff '\n' let string_of_file filename = let fd = open_in filename in let buff = Buffer.create 16 in try while true do buffer_add_line buff (input_line fd) done; failwith "" with End_of_file -> (close_in fd; Buffer.contents buff) let file_of_string filename s = let fd = Pervasives.open_out filename in output_string fd s; close_out fd let request_mark = "*** REQUEST ***" let answer_mark = "*** ANSWER ***" let end_mark = "*** END ***" let infeasible_mark = "Infeasible\n" let failure_mark = "Failure\n" let cache_name = "csdp.cache" let look_in_cache string_problem = let n = String.length string_problem in try let inch = open_in cache_name in let rec search () = while input_line inch <> request_mark do () done; let i = ref 0 in while !i < n & string_problem.[!i] = input_char inch do incr i done; if !i < n or input_line inch <> answer_mark then search () else begin let buff = Buffer.create 16 in let line = ref (input_line inch) in while (!line <> end_mark) do buffer_add_line buff !line; line := input_line inch done; close_in inch; Buffer.contents buff end in try search () with End_of_file -> close_in inch; raise Not_found with Sys_error _ -> raise Not_found let flush_to_cache string_problem string_result = try let flags = [Open_append;Open_text;Open_creat] in let outch = open_out_gen flags 0o666 cache_name in begin try Printf.fprintf outch "%s\n" request_mark; Printf.fprintf outch "%s" string_problem; Printf.fprintf outch "%s\n" answer_mark; Printf.fprintf outch "%s" string_result; Printf.fprintf outch "%s\n" end_mark; with Sys_error _ as e -> close_out outch; raise e end; close_out outch with Sys_error _ -> print_endline "Warning: Could not open or write to csdp cache" exception CsdpInfeasible let run_csdp dbg string_problem = try let res = look_in_cache string_problem in if res = infeasible_mark then raise CsdpInfeasible; if res = failure_mark then failwith "csdp error"; res with Not_found -> let input_file = Filename.temp_file "sos" ".dat-s" in let output_file = Filename.temp_file "sos" ".dat-s" in let temp_path = Filename.dirname input_file in let params_file = Filename.concat temp_path "param.csdp" in file_of_string input_file string_problem; file_of_string params_file csdp_params; let rv = Sys.command("cd "^temp_path^"; csdp "^input_file^" "^output_file^ (if dbg then "" else "> /dev/null")) in if rv = 1 or rv = 2 then (flush_to_cache string_problem infeasible_mark; raise CsdpInfeasible); if rv = 127 then (print_string "csdp not found, exiting..."; exit 1); if rv <> 0 & rv <> 3 (* reduced accuracy *) then (flush_to_cache string_problem failure_mark; failwith("csdp: error "^string_of_int rv)); let string_result = string_of_file output_file in flush_to_cache string_problem string_result; if not dbg then (Sys.remove input_file; Sys.remove output_file; Sys.remove params_file); string_result let csdp obj mats = try parse_csdpoutput (run_csdp !debugging (sdpa_of_problem "" obj mats)) with CsdpInfeasible -> failwith "csdp: Problem is infeasible" (* ------------------------------------------------------------------------- *) (* Try some apparently sensible scaling first. Note that this is purely to *) (* get a cleaner translation to floating-point, and doesn't affect any of *) (* the results, in principle. In practice it seems a lot better when there *) (* are extreme numbers in the original problem. *) (* ------------------------------------------------------------------------- *) let scale_then = let common_denominator amat acc = foldl (fun a m c -> lcm_num (denominator c) a) acc amat and maximal_element amat acc = foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in fun solver obj mats -> let cd1 = itlist common_denominator mats (Int 1) and cd2 = common_denominator (snd obj) (Int 1) in let mats' = map (mapf (fun x -> cd1 */ x)) mats and obj' = vector_cmul cd2 obj in let max1 = itlist maximal_element mats' (Int 0) and max2 = maximal_element (snd obj') (Int 0) in let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0)) and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in let mats'' = map (mapf (fun x -> x */ scal1)) mats' and obj'' = vector_cmul scal2 obj' in solver obj'' mats'';; (* ------------------------------------------------------------------------- *) (* Round a vector to "nice" rationals. *) (* ------------------------------------------------------------------------- *) let nice_rational n x = round_num (n */ x) // n;; let nice_vector n = mapa (nice_rational n);; (* ------------------------------------------------------------------------- *) (* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *) (* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *) (* ------------------------------------------------------------------------- *) let linear_program_basic a = let m,n = dimensions a in let mats = map (fun j -> diagonal (column j a)) (1--n) and obj = vector_const (Int 1) m in try ignore (run_csdp false (sdpa_of_problem "" obj mats)); true with CsdpInfeasible -> false (* ------------------------------------------------------------------------- *) (* Test whether a point is in the convex hull of others. Rather than use *) (* computational geometry, express as linear inequalities and call CSDP. *) (* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *) (* ------------------------------------------------------------------------- *) let in_convex_hull pts pt = let pts1 = (1::pt) :: map (fun x -> 1::x) pts in let pts2 = map (fun p -> map (fun x -> -x) p @ p) pts1 in let n = length pts + 1 and v = 2 * (length pt + 1) in let m = v + n - 1 in let mat = (m,n), itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i,j) |-> Int x)) (iter (1,n) (fun i -> (v + i,i+1) |-> Int 1) undefined) in linear_program_basic mat;; (* ------------------------------------------------------------------------- *) (* Filter down a set of points to a minimal set with the same convex hull. *) (* ------------------------------------------------------------------------- *) let minimal_convex_hull = let augment1 = function (m::ms) -> if in_convex_hull ms m then ms else ms@[m] | _ -> failwith "augment1" in let augment m ms = funpow 3 augment1 (m::ms) in fun mons -> let mons' = itlist augment (tl mons) [hd mons] in funpow (length mons') augment1 mons';; (* ------------------------------------------------------------------------- *) (* Stuff for "equations" (generic A->num functions). *) (* ------------------------------------------------------------------------- *) let equation_cmul c eq = if c =/ Int 0 then Empty else mapf (fun d -> c */ d) eq;; let equation_add eq1 eq2 = combine (+/) (fun x -> x =/ Int 0) eq1 eq2;; let equation_eval assig eq = let value v = apply assig v in foldl (fun a v c -> a +/ value(v) */ c) (Int 0) eq;; (* ------------------------------------------------------------------------- *) (* Eliminate among linear equations: return unconstrained variables and *) (* assignments for the others in terms of them. We give one pseudo-variable *) (* "one" that's used for a constant term. *) (* ------------------------------------------------------------------------- *) let eliminate_equations = let rec extract_first p l = match l with [] -> failwith "extract_first" | h::t -> if p(h) then h,t else let k,s = extract_first p t in k,h::s in let rec eliminate vars dun eqs = match vars with [] -> if forall is_undefined eqs then dun else (raise Unsolvable) | v::vs -> try let eq,oeqs = extract_first (fun e -> defined e v) eqs in let a = apply eq v in let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in let elim e = let b = tryapplyd e v (Int 0) in if b =/ Int 0 then e else equation_add e (equation_cmul (minus_num b // a) eq) in eliminate vs ((v |-> eq') (mapf elim dun)) (map elim oeqs) with Failure _ -> eliminate vs dun eqs in fun one vars eqs -> let assig = eliminate vars undefined eqs in let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in setify vs,assig;; (* ------------------------------------------------------------------------- *) (* Eliminate all variables, in an essentially arbitrary order. *) (* ------------------------------------------------------------------------- *) let eliminate_all_equations one = let choose_variable eq = let (v,_) = choose eq in if v = one then let eq' = undefine v eq in if is_undefined eq' then failwith "choose_variable" else let (w,_) = choose eq' in w else v in let rec eliminate dun eqs = match eqs with [] -> dun | eq::oeqs -> if is_undefined eq then eliminate dun oeqs else let v = choose_variable eq in let a = apply eq v in let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in let elim e = let b = tryapplyd e v (Int 0) in if b =/ Int 0 then e else equation_add e (equation_cmul (minus_num b // a) eq) in eliminate ((v |-> eq') (mapf elim dun)) (map elim oeqs) in fun eqs -> let assig = eliminate undefined eqs in let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in setify vs,assig;; (* ------------------------------------------------------------------------- *) (* Solve equations by assigning arbitrary numbers. *) (* ------------------------------------------------------------------------- *) let solve_equations one eqs = let vars,assigs = eliminate_all_equations one eqs in let vfn = itlist (fun v -> (v |-> Int 0)) vars (one |=> Int(-1)) in let ass = combine (+/) (fun c -> false) (mapf (equation_eval vfn) assigs) vfn in if forall (fun e -> equation_eval ass e =/ Int 0) eqs then undefine one ass else raise Sanity;; (* ------------------------------------------------------------------------- *) (* Hence produce the "relevant" monomials: those whose squares lie in the *) (* Newton polytope of the monomials in the input. (This is enough according *) (* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *) (* vol 45, pp. 363--374, 1978. *) (* *) (* These are ordered in sort of decreasing degree. In particular the *) (* constant monomial is last; this gives an order in diagonalization of the *) (* quadratic form that will tend to display constants. *) (* ------------------------------------------------------------------------- *) let newton_polytope pol = let vars = poly_variables pol in let mons = map (fun m -> map (fun x -> monomial_degree x m) vars) (dom pol) and ds = map (fun x -> (degree x pol + 1) / 2) vars in let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]] and mons' = minimal_convex_hull mons in let all' = filter (fun m -> in_convex_hull mons' (map (fun x -> 2 * x) m)) all in map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a) vars m monomial_1) (rev all');; (* ------------------------------------------------------------------------- *) (* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *) (* ------------------------------------------------------------------------- *) let diag m = let nn = dimensions m in let n = fst nn in if snd nn <> n then failwith "diagonalize: non-square matrix" else let rec diagonalize i m = if is_zero m then [] else let a11 = element m (i,i) in if a11 a1k // a11) v in let m' = (n,n), iter (i+1,n) (fun j -> iter (i+1,n) (fun k -> ((j,k) |--> (element m (j,k) -/ element v j */ element v' k)))) undefined in (a11,v')::diagonalize (i + 1) m' in diagonalize 1 m;; (* ------------------------------------------------------------------------- *) (* Adjust a diagonalization to collect rationals at the start. *) (* ------------------------------------------------------------------------- *) let deration d = if d = [] then Int 0,d else let adj(c,l) = let a = foldl (fun a i c -> lcm_num a (denominator c)) (Int 1) (snd l) // foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in (c // (a */ a)),mapa (fun x -> a */ x) l in let d' = map adj d in let a = itlist ((o) lcm_num ((o) denominator fst)) d' (Int 1) // itlist ((o) gcd_num ((o) numerator fst)) d' (Int 0) in (Int 1 // a),map (fun (c,l) -> (a */ c,l)) d';; (* ------------------------------------------------------------------------- *) (* Enumeration of monomials with given multidegree bound. *) (* ------------------------------------------------------------------------- *) let rec enumerate_monomials d vars = if d < 0 then [] else if d = 0 then [undefined] else if vars = [] then [monomial_1] else let alts = map (fun k -> let oths = enumerate_monomials (d - k) (tl vars) in map (fun ks -> if k = 0 then ks else (hd vars |-> k) ks) oths) (0--d) in end_itlist (@) alts;; (* ------------------------------------------------------------------------- *) (* Enumerate products of distinct input polys with degree <= d. *) (* We ignore any constant input polynomials. *) (* Give the output polynomial and a record of how it was derived. *) (* ------------------------------------------------------------------------- *) let rec enumerate_products d pols = if d = 0 then [poly_const num_1,Rational_lt num_1] else if d < 0 then [] else match pols with [] -> [poly_const num_1,Rational_lt num_1] | (p,b)::ps -> let e = multidegree p in if e = 0 then enumerate_products d ps else enumerate_products d ps @ map (fun (q,c) -> poly_mul p q,Product(b,c)) (enumerate_products (d - e) ps);; (* ------------------------------------------------------------------------- *) (* Multiply equation-parametrized poly by regular poly and add accumulator. *) (* ------------------------------------------------------------------------- *) let epoly_pmul p q acc = foldl (fun a m1 c -> foldl (fun b m2 e -> let m = monomial_mul m1 m2 in let es = tryapplyd b m undefined in (m |-> equation_add (equation_cmul c e) es) b) a q) acc p;; (* ------------------------------------------------------------------------- *) (* Usual operations on equation-parametrized poly. *) (* ------------------------------------------------------------------------- *) let epoly_cmul c l = if c =/ Int 0 then undefined else mapf (equation_cmul c) l;; let epoly_neg x = epoly_cmul (Int(-1)) x;; let epoly_add x = combine equation_add is_undefined x;; let epoly_sub p q = epoly_add p (epoly_neg q);; (* ------------------------------------------------------------------------- *) (* Convert regular polynomial. Note that we treat (0,0,0) as -1. *) (* ------------------------------------------------------------------------- *) let epoly_of_poly p = foldl (fun a m c -> (m |-> ((0,0,0) |=> minus_num c)) a) undefined p;; (* ------------------------------------------------------------------------- *) (* String for block diagonal matrix numbered k. *) (* ------------------------------------------------------------------------- *) let sdpa_of_blockdiagonal k m = let pfx = string_of_int k ^" " in let ents = foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in let entss = sort (increasing fst) ents in itlist (fun ((b,i,j),c) a -> pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) entss "";; (* ------------------------------------------------------------------------- *) (* SDPA for problem using block diagonal (i.e. multiple SDPs) *) (* ------------------------------------------------------------------------- *) let sdpa_of_blockproblem comment nblocks blocksizes obj mats = let m = length mats - 1 in "\"" ^ comment ^ "\"\n" ^ string_of_int m ^ "\n" ^ string_of_int nblocks ^ "\n" ^ (end_itlist (fun s t -> s^" "^t) (map string_of_int blocksizes)) ^ "\n" ^ sdpa_of_vector obj ^ itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a) (1--length mats) mats "";; (* ------------------------------------------------------------------------- *) (* Hence run CSDP on a problem in block diagonal form. *) (* ------------------------------------------------------------------------- *) let csdp_blocks nblocks blocksizes obj mats = let string_problem = sdpa_of_blockproblem "" nblocks blocksizes obj mats in try parse_csdpoutput (run_csdp !debugging string_problem) with CsdpInfeasible -> failwith "csdp: Problem is infeasible" (* ------------------------------------------------------------------------- *) (* 3D versions of matrix operations to consider blocks separately. *) (* ------------------------------------------------------------------------- *) let bmatrix_add = combine (+/) (fun x -> x =/ Int 0);; let bmatrix_cmul c bm = if c =/ Int 0 then undefined else mapf (fun x -> c */ x) bm;; let bmatrix_neg = bmatrix_cmul (Int(-1));; let bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);; (* ------------------------------------------------------------------------- *) (* Smash a block matrix into components. *) (* ------------------------------------------------------------------------- *) let blocks blocksizes bm = map (fun (bs,b0) -> let m = foldl (fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a) undefined bm in (*let d = foldl (fun a (i,j) c -> max a (max i j)) 0 m in*) (((bs,bs),m):matrix)) (zip blocksizes (1--length blocksizes));; (* ------------------------------------------------------------------------- *) (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) (* ------------------------------------------------------------------------- *) let real_positivnullstellensatz_general linf d eqs leqs pol : poly list * (positivstellensatz * (num * poly) list) list = let vars = itlist ((o) union poly_variables) (pol::eqs @ map fst leqs) [] in let monoid = if linf then (poly_const num_1,Rational_lt num_1):: (filter (fun (p,c) -> multidegree p <= d) leqs) else enumerate_products d leqs in let nblocks = length monoid in let mk_idmultiplier k p = let e = d - multidegree p in let mons = enumerate_monomials e vars in let nons = zip mons (1--length mons) in mons, itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in let mk_sqmultiplier k (p,c) = let e = (d - multidegree p) / 2 in let mons = enumerate_monomials e vars in let nons = zip mons (1--length mons) in mons, itlist (fun (m1,n1) -> itlist (fun (m2,n2) a -> let m = monomial_mul m1 m2 in if n1 > n2 then a else let c = if n1 = n2 then Int 1 else Int 2 in let e = tryapplyd a m undefined in (m |-> equation_add ((k,n1,n2) |=> c) e) a) nons) nons undefined in let sqmonlist,sqs = unzip(map2 mk_sqmultiplier (1--length monoid) monoid) and idmonlist,ids = unzip(map2 mk_idmultiplier (1--length eqs) eqs) in let blocksizes = map length sqmonlist in let bigsum = itlist2 (fun p q a -> epoly_pmul p q a) eqs ids (itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs (epoly_of_poly(poly_neg pol))) in let eqns = foldl (fun a m e -> e::a) [] bigsum in let pvs,assig = eliminate_all_equations (0,0,0) eqns in let qvars = (0,0,0)::pvs in let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in let mk_matrix v = foldl (fun m (b,i,j) ass -> if b < 0 then m else let c = tryapplyd ass v (Int 0) in if c =/ Int 0 then m else ((b,j,i) |-> c) (((b,i,j) |-> c) m)) undefined allassig in let diagents = foldl (fun a (b,i,j) e -> if b > 0 & i = j then equation_add e a else a) undefined allassig in let mats = map mk_matrix qvars and obj = length pvs, itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0))) undefined in let raw_vec = if pvs = [] then vector_0 0 else scale_then (csdp_blocks nblocks blocksizes) obj mats in let find_rounding d = (if !debugging then (Format.print_string("Trying rounding with limit "^string_of_num d); Format.print_newline()) else ()); let vec = nice_vector d raw_vec in let blockmat = iter (1,dim vec) (fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a) (bmatrix_neg (el 0 mats)) in let allmats = blocks blocksizes blockmat in vec,map diag allmats in let vec,ratdias = if pvs = [] then find_rounding num_1 else tryfind find_rounding (map Num.num_of_int (1--31) @ map pow2 (5--66)) in let newassigs = itlist (fun k -> el (k - 1) pvs |-> element vec k) (1--dim vec) ((0,0,0) |=> Int(-1)) in let finalassigs = foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs allassig in let poly_of_epoly p = foldl (fun a v e -> (v |--> equation_eval finalassigs e) a) undefined p in let mk_sos mons = let mk_sq (c,m) = c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a) (1--length mons) undefined in map mk_sq in let sqs = map2 mk_sos sqmonlist ratdias and cfs = map poly_of_epoly ids in let msq = filter (fun (a,b) -> b <> []) (map2 (fun a b -> a,b) monoid sqs) in let eval_sq sqs = itlist (fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in let sanity = itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq (itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs (poly_neg pol)) in if not(is_undefined sanity) then raise Sanity else cfs,map (fun (a,b) -> snd a,b) msq;; let term_of_monoid l1 m = itlist (fun i m -> Mul (nth l1 i,m)) m (Const num_1) let rec term_of_pos l1 x = match x with Axiom_eq i -> failwith "term_of_pos" | Axiom_le i -> nth l1 i | Axiom_lt i -> nth l1 i | Monoid m -> term_of_monoid l1 m | Rational_eq n -> Const n | Rational_le n -> Const n | Rational_lt n -> Const n | Square t -> Pow (t, 2) | Eqmul (t, y) -> Mul (t, term_of_pos l1 y) | Sum (y, z) -> Add (term_of_pos l1 y, term_of_pos l1 z) | Product (y, z) -> Mul (term_of_pos l1 y, term_of_pos l1 z);; let dest_monomial mon = sort (increasing fst) (graph mon);; let monomial_order = let rec lexorder l1 l2 = match (l1,l2) with [],[] -> true | vps,[] -> false | [],vps -> true | ((x1,n1)::vs1),((x2,n2)::vs2) -> if x1 < x2 then true else if x2 < x1 then false else if n1 < n2 then false else if n2 < n1 then true else lexorder vs1 vs2 in fun m1 m2 -> if m2 = monomial_1 then true else if m1 = monomial_1 then false else let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in let deg1 = itlist ((o) (+) snd) mon1 0 and deg2 = itlist ((o) (+) snd) mon2 0 in if deg1 < deg2 then false else if deg1 > deg2 then true else lexorder mon1 mon2;; let dest_poly p = map (fun (m,c) -> c,dest_monomial m) (sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p));; (* ------------------------------------------------------------------------- *) (* Map back polynomials and their composites to term. *) (* ------------------------------------------------------------------------- *) let term_of_varpow = fun x k -> if k = 1 then Var x else Pow (Var x, k);; let term_of_monomial = fun m -> if m = monomial_1 then Const num_1 else let m' = dest_monomial m in let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in end_itlist (fun s t -> Mul (s,t)) vps;; let term_of_cmonomial = fun (m,c) -> if m = monomial_1 then Const c else if c =/ num_1 then term_of_monomial m else Mul (Const c,term_of_monomial m);; let term_of_poly = fun p -> if p = poly_0 then Zero else let cms = map term_of_cmonomial (sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p)) in end_itlist (fun t1 t2 -> Add (t1,t2)) cms;; let term_of_sqterm (c,p) = Product(Rational_lt c,Square(term_of_poly p));; let term_of_sos (pr,sqs) = if sqs = [] then pr else Product(pr,end_itlist (fun a b -> Sum(a,b)) (map term_of_sqterm sqs));; let rec deepen f n = try (*print_string "Searching with depth limit "; print_int n; print_newline();*) f n with Failure _ -> deepen f (n + 1);; exception TooDeep let deepen_until limit f n = match compare limit 0 with | 0 -> raise TooDeep | -1 -> deepen f n | _ -> let rec d_until f n = try if !debugging then (print_string "Searching with depth limit "; print_int n; print_newline()) ; f n with Failure x -> if !debugging then (Printf.printf "solver error : %s\n" x) ; if n = limit then raise TooDeep else d_until f (n + 1) in d_until f n (* patch to remove zero polynomials from equalities. In this case, hol light loops *) let real_nonlinear_prover depthmax eqs les lts = let eq = map poly_of_term eqs and le = map poly_of_term les and lt = map poly_of_term lts in let pol = itlist poly_mul lt (poly_const num_1) and lep = map (fun (t,i) -> t,Axiom_le i) (zip le (0--(length le - 1))) and ltp = map (fun (t,i) -> t,Axiom_lt i) (zip lt (0--(length lt - 1))) and eqp = itlist2 (fun t i res -> if t = undefined then res else (t,Axiom_eq i)::res) eq (0--(length eq - 1)) [] in let proof = let leq = lep @ ltp in let eq = List.map fst eqp in let tryall d = let e = multidegree pol (*and pol' = poly_neg pol*) in let k = if e = 0 then 1 else d / e in tryfind (fun i -> d,i, real_positivnullstellensatz_general false d eq leq (poly_neg(poly_pow pol i))) (0--k) in let d,i,(cert_ideal,cert_cone) = deepen_until depthmax tryall 0 in let proofs_ideal = map2 (fun q i -> Eqmul(term_of_poly q,i)) cert_ideal (List.map snd eqp) and proofs_cone = map term_of_sos cert_cone and proof_ne = if lt = [] then Rational_lt num_1 else let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in end_itlist (fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in if !debugging then (print_string("Translating proof certificate to Coq"); print_newline()); proof;; (* ------------------------------------------------------------------------- *) (* Now pure SOS stuff. *) (* ------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------- *) (* Some combinatorial helper functions. *) (* ------------------------------------------------------------------------- *) let rec allpermutations l = if l = [] then [[]] else itlist (fun h acc -> map (fun t -> h::t) (allpermutations (subtract l [h])) @ acc) l [];; let allvarorders l = map (fun vlis x -> index x vlis) (allpermutations l);; let changevariables_monomial zoln (m:monomial) = foldl (fun a x k -> (assoc x zoln |-> k) a) monomial_1 m;; let changevariables zoln pol = foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a) poly_0 pol;; (* ------------------------------------------------------------------------- *) (* Sum-of-squares function with some lowbrow symmetry reductions. *) (* ------------------------------------------------------------------------- *) let sumofsquares_general_symmetry tool pol = let vars = poly_variables pol and lpps = newton_polytope pol in let n = length lpps in let sym_eqs = let invariants = filter (fun vars' -> is_undefined(poly_sub pol (changevariables (zip vars vars') pol))) (allpermutations vars) in (* let lpps2 = allpairs monomial_mul lpps lpps in*) (* let lpp2_classes = setify(map (fun m -> setify(map (fun vars' -> changevariables_monomial (zip vars vars') m) invariants)) lpps2) in *) let lpns = zip lpps (1--length lpps) in let lppcs = filter (fun (m,(n1,n2)) -> n1 <= n2) (allpairs (fun (m1,n1) (m2,n2) -> (m1,m2),(n1,n2)) lpns lpns) in let clppcs = end_itlist (@) (map (fun ((m1,m2),(n1,n2)) -> map (fun vars' -> (changevariables_monomial (zip vars vars') m1, changevariables_monomial (zip vars vars') m2),(n1,n2)) invariants) lppcs) in let clppcs_dom = setify(map fst clppcs) in let clppcs_cls = map (fun d -> filter (fun (e,_) -> e = d) clppcs) clppcs_dom in let eqvcls = map (o setify (map snd)) clppcs_cls in let mk_eq cls acc = match cls with [] -> raise Sanity | [h] -> acc | h::t -> map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in itlist mk_eq eqvcls [] in let eqs = foldl (fun a x y -> y::a) [] (itern 1 lpps (fun m1 n1 -> itern 1 lpps (fun m2 n2 f -> let m = monomial_mul m1 m2 in if n1 > n2 then f else let c = if n1 = n2 then Int 1 else Int 2 in (m |-> ((n1,n2) |-> c) (tryapplyd f m undefined)) f)) (foldl (fun a m c -> (m |-> ((0,0)|=>c)) a) undefined pol)) @ sym_eqs in let pvs,assig = eliminate_all_equations (0,0) eqs in let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in let qvars = (0,0)::pvs in let diagents = end_itlist equation_add (map (fun i -> apply allassig (i,i)) (1--n)) in let mk_matrix v = ((n,n), foldl (fun m (i,j) ass -> let c = tryapplyd ass v (Int 0) in if c =/ Int 0 then m else ((j,i) |-> c) (((i,j) |-> c) m)) undefined allassig :matrix) in let mats = map mk_matrix qvars and obj = length pvs, itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0))) undefined in let raw_vec = if pvs = [] then vector_0 0 else tool obj mats in let find_rounding d = (if !debugging then (Format.print_string("Trying rounding with limit "^string_of_num d); Format.print_newline()) else ()); let vec = nice_vector d raw_vec in let mat = iter (1,dim vec) (fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a) (matrix_neg (el 0 mats)) in deration(diag mat) in let rat,dia = if pvs = [] then let mat = matrix_neg (el 0 mats) in deration(diag mat) else tryfind find_rounding (map Num.num_of_int (1--31) @ map pow2 (5--66)) in let poly_of_lin(d,v) = d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in let lins = map poly_of_lin dia in let sqs = map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in let sos = poly_cmul rat (end_itlist poly_add sqs) in if is_undefined(poly_sub sos pol) then rat,lins else raise Sanity;; let (sumofsquares: poly -> Num.num * (( Num.num * poly) list)) = sumofsquares_general_symmetry csdp;;