(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false) t1 t2 then true else false let rec compare_constr' t1 t2 = if compare_constr_nosub t1 t2 then true else (compare_constr (compare_constr') t1 t2) let rec substitterm prof t by_t in_u = if (compare_constr' (lift prof t) in_u) then (lift prof by_t) else map_constr_with_binders succ (fun i -> substitterm i t by_t) prof in_u let lift_ldecl n ldecl = List.map (fun (x,y) -> x,lift n y) ldecl let understand = Pretyping.Default.understand Evd.empty (Global.env()) (** Operations on names and identifiers *) let id_of_name = function Anonymous -> id_of_string "H" | Name id -> id;; let name_of_string str = Name (id_of_string str) let string_of_name nme = string_of_id (id_of_name nme) (** [isVarf f x] returns [true] if term [x] is of the form [(Var f)]. *) let isVarf f x = match x with | RVar (_,x) -> Pervasives.compare x f = 0 | _ -> false (** [ident_global_exist id] returns true if identifier [id] is linked in global environment. *) let ident_global_exist id = try let ans = CRef (Libnames.Ident (dummy_loc,id)) in let _ = ignore (Constrintern.intern_constr Evd.empty (Global.env()) ans) in true with _ -> false (** [next_ident_fresh id] returns a fresh identifier (ie not linked in global env) with base [id]. *) let next_ident_fresh (id:identifier) = let res = ref id in while ident_global_exist !res do res := Nameops.lift_ident !res done; !res (** {2 Debugging} *) (* comment this line to see debug msgs *) let msg x = () ;; let pr_lconstr c = str "" (* uncomment this to see debugging *) let prconstr c = msg (str" " ++ Printer.pr_lconstr c) let prconstrnl c = msg (str" " ++ Printer.pr_lconstr c ++ str"\n") let prlistconstr lc = List.iter prconstr lc let prstr s = msg(str s) let prNamedConstr s c = begin msg(str ""); msg(str(s^" {§ ") ++ Printer.pr_lconstr c ++ str " §} "); msg(str ""); end let prNamedRConstr s c = begin msg(str ""); msg(str(s^" {§ ") ++ Printer.pr_rawconstr c ++ str " §} "); msg(str ""); end let prNamedLConstr_aux lc = List.iter (prNamedConstr "\n") lc let prNamedLConstr s lc = begin prstr "[§§§ "; prstr s; prNamedLConstr_aux lc; prstr " §§§]\n"; end let prNamedLDecl s lc = begin prstr s; prstr "\n"; List.iter (fun (nm,_,tp) -> prNamedConstr (string_of_name nm) tp) lc; prstr "\n"; end let showind (id:identifier) = let cstrid = Tacinterp.constr_of_id (Global.env()) id in let ind1,cstrlist = Inductiveops.find_inductive (Global.env()) Evd.empty cstrid in let mib1,ib1 = Inductive.lookup_mind_specif (Global.env()) ind1 in List.iter (fun (nm, optcstr, tp) -> print_string (string_of_name nm^":"); prconstr tp; print_string "\n") ib1.mind_arity_ctxt; (match ib1.mind_arity with | Monomorphic x -> Printf.printf "arity :"; prconstr x.mind_user_arity | Polymorphic x -> Printf.printf "arity : universe?"); Array.iteri (fun i x -> Printf.printf"type constr %d :" i ; prconstr x) ib1.mind_user_lc (** {2 Misc} *) exception Found of int (* Array scanning *) let array_find (arr: 'a array) (pred: int -> 'a -> bool): int option = try for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (Found i) done; None with Found i -> Some i let array_prfx (arr: 'a array) (pred: int -> 'a -> bool): int = try for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (Found i) done; Array.length arr (* all elt are positive *) with Found i -> i let array_fold_lefti (f: int -> 'a -> 'b -> 'a) (acc:'a) (arr:'b array): 'a = let i = ref 0 in Array.fold_left (fun acc x -> let res = f !i acc x in i := !i + 1; res) acc arr (* Like list_chop but except that [i] is the size of the suffix of [l]. *) let list_chop_end i l = let size_prefix = List.length l -i in if size_prefix < 0 then failwith "list_chop_end" else list_chop size_prefix l let list_fold_lefti (f: int -> 'a -> 'b -> 'a) (acc:'a) (arr:'b list): 'a = let i = ref 0 in List.fold_left (fun acc x -> let res = f !i acc x in i := !i + 1; res) acc arr let list_filteri (f: int -> 'a -> bool) (l:'a list):'a list = let i = ref 0 in List.filter (fun x -> let res = f !i x in i := !i + 1; res) l (** Iteration module *) module For = struct let rec map i j (f: int -> 'a) = if i>j then [] else f i :: (map (i+1) j f) let rec foldup i j (f: 'a -> int -> 'a) acc = if i>j then acc else let newacc = f acc i in foldup (i+1) j f newacc let rec folddown i j (f: 'a -> int -> 'a) acc = if i>j then acc else let newacc = f acc j in folddown i (j-1) f newacc let fold i j = if i Printf.sprintf "Linked %d" i | Unlinked -> Printf.sprintf "Unlinked" | Funres -> Printf.sprintf "Funres" let linkmonad f lnkvar = match lnkvar with | Linked i -> Linked (f i) | Unlinked -> Unlinked | Funres -> Funres let linklift lnkvar i = linkmonad (fun x -> x+i) lnkvar (* This map is used to deal with debruijn linked indices. *) module Link = Map.Make (struct type t = int let compare = Pervasives.compare end) let pr_links l = Printf.printf "links:\n"; Link.iter (fun k e -> Printf.printf "%d : %s\n" k (prlinked e)) l; Printf.printf "_____________\n" type 'a merged_arg = | Prm_stable of 'a | Prm_linked of 'a | Prm_arg of 'a | Arg_stable of 'a | Arg_linked of 'a | Arg_funres type merge_infos = { ident:identifier; (* new inductive name *) mib1: mutual_inductive_body; oib1: one_inductive_body; mib2: mutual_inductive_body; oib2: one_inductive_body; (* Array of links of the first inductive (should be all stable) *) lnk1: int merged_arg array; (* Array of links of the second inductive (point to the first ind param/args) *) lnk2: int merged_arg array; (* number of rec params of ind1 which remai rec param in merge *) nrecprms1: int; (* number of other rec params of ind1 (which become non parm) *) notherprms1:int; (* number of functional result params of ind2 (which become non parm) *) nfunresprms1:int; (* list of decl of rec parms from ind1 which remain parms *) recprms1: rel_declaration list; (* List of other rec parms from ind1 *) otherprms1: rel_declaration list; (* parms that became args *) funresprms1: rel_declaration list; (* parms that are functional result args *) (* number of rec params of ind2 which remain rec param in merge (and not linked) *) nrecprms2: int; (* number of other params of ind2 (which become non rec parm) *) notherprms2:int; (* number of functional result params of ind2 (which become non parm) *) nfunresprms2:int; (* list of decl of rec parms from ind2 which remain parms (and not linked) *) recprms2: rel_declaration list; (* List of other rec parms from ind2 (which are linked or become non parm) *) otherprms2: rel_declaration list; funresprms2: rel_declaration list; (* parms that are functional result args *) } let pr_merginfo x = let i,s= match x with | Prm_linked i -> Some i,"Prm_linked" | Arg_linked i -> Some i,"Arg_linked" | Prm_stable i -> Some i,"Prm_stable" | Prm_arg i -> Some i,"Prm_arg" | Arg_stable i -> Some i,"Arg_stable" | Arg_funres -> None , "Arg_funres" in match i with | Some i -> Printf.sprintf "%s(%d)" s i | None -> Printf.sprintf "%s" s let isPrm_stable x = match x with Prm_stable _ -> true | _ -> false let isArg_stable x = match x with Arg_stable _ -> true | _ -> false let isArg_funres x = match x with Arg_funres -> true | _ -> false let filter_shift_stable (lnk:int merged_arg array) (l:'a list): 'a list = let prms = list_filteri (fun i _ -> isPrm_stable lnk.(i)) l in let args = list_filteri (fun i _ -> isArg_stable lnk.(i)) l in let fres = list_filteri (fun i _ -> isArg_funres lnk.(i)) l in prms@args@fres (** Reverse the link map, keeping only linked vars, elements are list of int as several vars may be linked to the same var. *) let revlinked lnk = For.fold 0 (Array.length lnk - 1) (fun acc k -> match lnk.(k) with | Unlinked | Funres -> acc | Linked i -> let old = try Link.find i acc with Not_found -> [] in Link.add i (k::old) acc) Link.empty let array_switch arr i j = let aux = arr.(j) in arr.(j) <- arr.(i); arr.(i) <- aux let filter_shift_stable_right (lnk:int merged_arg array) (l:'a list): 'a list = let larr = Array.of_list l in let _ = Array.iteri (fun j x -> match x with | Prm_linked i -> array_switch larr i j | Arg_linked i -> array_switch larr i j | Prm_stable i -> () | Prm_arg i -> () | Arg_stable i -> () | Arg_funres -> () ) lnk in filter_shift_stable lnk (Array.to_list larr) (** {1 Utilities for merging} *) let ind1name = id_of_string "__ind1" let ind2name = id_of_string "__ind2" (** Performs verifications on two graphs before merging: they must not be co-inductive, and for the moment they must not be mutual either. *) let verify_inds mib1 mib2 = if not mib1.mind_finite then error "First argument is coinductive"; if not mib2.mind_finite then error "Second argument is coinductive"; if mib1.mind_ntypes <> 1 then error "First argument is mutual"; if mib2.mind_ntypes <> 1 then error "Second argument is mutual"; () (** {1 Merging function graphs} *) (** [shift_linked_params mib1 mib2 lnk] Computes which parameters (rec uniform and ordinary ones) of mutual inductives [mib1] and [mib2] remain uniform when linked by [lnk]. All parameters are considered, ie we take parameters of the first inductive body of [mib1] and [mib2]. Explanation: The two inductives have parameters, some of the first are recursively uniform, some of the last are functional result of the functional graph. (I x1 x2 ... xk ... xk' ... xn) (J y1 y2 ... xl ... yl' ... ym) Problem is, if some rec unif params are linked to non rec unif ones, they become non rec (and the following too). And functinal argument have to be shifted at the end *) let shift_linked_params mib1 mib2 (lnk1:linked_var array) (lnk2:linked_var array) id = let linked_targets = revlinked lnk2 in let is_param_of_mib1 x = x < mib1.mind_nparams_rec in let is_param_of_mib2 x = x < mib2.mind_nparams_rec in let is_targetted_by_non_recparam_lnk1 i = try let targets = Link.find i linked_targets in List.exists (fun x -> not (is_param_of_mib2 x)) targets with Not_found -> false in let mlnk1 = Array.mapi (fun i lkv -> let isprm = is_param_of_mib1 i in let prmlost = is_targetted_by_non_recparam_lnk1 i in match isprm , prmlost, lnk1.(i) with | true , true , _ -> Prm_arg i (* recparam becoming ordinary *) | true , false , _-> Prm_stable i (* recparam remains recparam*) | false , false , Funres -> Arg_funres | _ , _ , Funres -> assert false (* fun res cannot be a rec param or lost *) | false , _ , _ -> Arg_stable i) (* Args of lnk1 are not linked *) lnk1 in let mlnk2 = Array.mapi (fun i lkv -> (* Is this correct if some param of ind2 is lost? *) let isprm = is_param_of_mib2 i in match isprm , lnk2.(i) with | true , Linked j when not (is_param_of_mib1 j) -> Prm_arg j (* recparam becoming ordinary *) | true , Linked j -> Prm_linked j (*recparam linked to recparam*) | true , Unlinked -> Prm_stable i (* recparam remains recparam*) | false , Linked j -> Arg_linked j (* Args of lnk2 lost *) | false , Unlinked -> Arg_stable i (* Args of lnk2 remains *) | false , Funres -> Arg_funres | true , Funres -> assert false (* fun res cannot be a rec param *) ) lnk2 in let oib1 = mib1.mind_packets.(0) in let oib2 = mib2.mind_packets.(0) in (* count params remaining params *) let n_params1 = array_prfx mlnk1 (fun i x -> not (isPrm_stable x)) in let n_params2 = array_prfx mlnk2 (fun i x -> not (isPrm_stable x)) in let bldprms arity_ctxt mlnk = list_fold_lefti (fun i (acc1,acc2,acc3) x -> match mlnk.(i) with | Prm_stable _ -> x::acc1 , acc2 , acc3 | Prm_arg _ | Arg_stable _ -> acc1 , x::acc2 , acc3 | Arg_funres -> acc1 , acc2 , x::acc3 | _ -> acc1 , acc2 , acc3) (* Prm_linked and Arg_xxx = forget it *) ([],[],[]) arity_ctxt in let recprms1,otherprms1,funresprms1 = bldprms (List.rev oib1.mind_arity_ctxt) mlnk1 in let recprms2,otherprms2,funresprms2 = bldprms (List.rev oib2.mind_arity_ctxt) mlnk2 in { ident=id; mib1=mib1; oib1 = oib1; mib2=mib2; oib2 = oib2; lnk1 = mlnk1; lnk2 = mlnk2; nrecprms1 = n_params1; recprms1 = recprms1; otherprms1 = otherprms1; funresprms1 = funresprms1; notherprms1 = Array.length mlnk1 - n_params1; nfunresprms1 = List.length funresprms1; nrecprms2 = n_params2; recprms2 = recprms2; otherprms2 = otherprms2; funresprms2 = funresprms2; notherprms2 = Array.length mlnk2 - n_params2; nfunresprms2 = List.length funresprms2; } (** {1 Merging functions} *) exception NoMerge (* lnk is an link array of *all* args (from 1 and 2) *) let merge_app c1 c2 id1 id2 shift filter_shift_stable = let lnk = Array.append shift.lnk1 shift.lnk2 in match c1 , c2 with | RApp(_,f1, arr1), RApp(_,f2,arr2) when isVarf id1 f1 && isVarf id2 f2 -> let args = filter_shift_stable lnk (arr1 @ arr2) in RApp (dummy_loc,RVar (dummy_loc,shift.ident) , args) | RApp(_,f1, arr1), RApp(_,f2,arr2) -> raise NoMerge | _ -> raise NoMerge let merge_app_unsafe c1 c2 shift filter_shift_stable = let lnk = Array.append shift.lnk1 shift.lnk2 in match c1 , c2 with | RApp(_,f1, arr1), RApp(_,f2,arr2) -> let args = filter_shift_stable lnk (arr1 @ arr2) in RApp (dummy_loc,RVar(dummy_loc,shift.ident) , args) | _ -> raise NoMerge (* Heuristic when merging two lists of hypothesis: merge every rec calls of nrach 1 with all rec calls of branch 2. *) (* TODO: reecrire cette heuristique (jusqu'a merge_types) *) let onefoud = ref false (* Ugly *) let rec merge_rec_hyps shift accrec (ltyp:(Names.name * Rawterm.rawconstr) list) filter_shift_stable = match ltyp with | [] -> [] | (nme,(RApp(_,f, largs) as t)) :: lt when isVarf ind2name f -> let _ = onefoud := true in let rechyps = List.map (fun (nme,ind) -> match ind with | RApp(_,i,args) -> nme, merge_app_unsafe ind t shift filter_shift_stable | _ -> assert false) accrec in rechyps @ merge_rec_hyps shift accrec lt filter_shift_stable | e::lt -> e :: merge_rec_hyps shift accrec lt filter_shift_stable let rec build_suppl_reccall (accrec:(name * rawconstr) list) concl2 shift = List.map (fun (nm,tp) -> (nm,merge_app_unsafe tp concl2 shift)) accrec let find_app (nme:identifier) (ltyp: (name * rawconstr) list) = try ignore (List.map (fun x -> match x with | _,(RApp(_,f,_)) when isVarf nme f -> raise (Found 0) | _ -> ()) ltyp); false with Found _ -> true let rec merge_types shift accrec1 (ltyp1:(name * rawconstr) list) concl1 (ltyp2:(name * rawconstr) list) concl2 : (name * rawconstr) list * rawconstr = let _ = prstr "MERGE_TYPES\n" in let _ = prstr "ltyp 1 : " in let _ = List.iter (fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) ltyp1 in let _ = prstr "\nltyp 2 : " in let _ = List.iter (fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) ltyp2 in let _ = prstr "\n" in let res = match ltyp1 with | [] -> let isrec1 = (accrec1<>[]) in let isrec2 = find_app ind2name ltyp2 in let _ = if isrec2 then prstr " ISREC2 TRUE" else prstr " ISREC2 FALSE" in let _ = if isrec1 then prstr " ISREC1 TRUE\n" else prstr " ISREC1 FALSE\n" in let rechyps = if isrec1 && isrec2 then merge_rec_hyps shift accrec1 ltyp2 filter_shift_stable else if isrec1 (* if rec calls in accrec1 and not in ltyp2, add one to ltyp2 *) then merge_rec_hyps shift accrec1 (ltyp2@[name_of_string "concl2",concl2]) filter_shift_stable else if isrec2 then merge_rec_hyps shift [name_of_string "concl1",concl1] ltyp2 filter_shift_stable_right else [] in let _ = prstr"\nrechyps : " in let _ = List.iter (fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) rechyps in let _ = prstr "MERGE CONCL : " in let _ = prNamedRConstr "concl1" concl1 in let _ = prstr " with " in let _ = prNamedRConstr "concl2" concl2 in let _ = prstr "\n" in let concl = merge_app concl1 concl2 ind1name ind2name shift filter_shift_stable in let _ = prstr "FIN " in let _ = prNamedRConstr "concl" concl in let _ = prstr "\n" in rechyps , concl | (nme,t1)as e ::lt1 -> match t1 with | RApp(_,f,carr) when isVarf ind1name f -> merge_types shift (e::accrec1) lt1 concl1 ltyp2 concl2 | _ -> let recres, recconcl2 = merge_types shift accrec1 lt1 concl1 ltyp2 concl2 in ((nme,t1) :: recres) , recconcl2 in res (** [build_link_map_aux allargs1 allargs2 shift] returns the mapping of linked args [allargs2] to target args of [allargs1] as specified in [shift]. [allargs1] and [allargs2] are in reverse order. Also returns the list of unlinked vars of [allargs2]. *) let build_link_map_aux (allargs1:identifier array) (allargs2:identifier array) (lnk:int merged_arg array) = array_fold_lefti (fun i acc e -> if i = Array.length lnk - 1 then acc (* functional arg, not in allargs *) else match e with | Prm_linked j | Arg_linked j -> Idmap.add allargs2.(i) allargs1.(j) acc | _ -> acc) Idmap.empty lnk let build_link_map allargs1 allargs2 lnk = let allargs1 = Array.of_list (List.rev (List.map (fun (x,y) -> id_of_name x) allargs1)) in let allargs2 = Array.of_list (List.rev (List.map (fun (x,y) -> id_of_name x) allargs2)) in build_link_map_aux allargs1 allargs2 lnk (** [merge_one_constructor lnk shift typcstr1 typcstr2] merges the two constructor rawtypes [typcstr1] and [typcstr2]. [typcstr1] and [typcstr2] contain all parameters (including rec. unif. ones) of their inductive. if [typcstr1] and [typcstr2] are of the form: forall recparams1, forall ordparams1, H1a -> H2a... (I1 x1 y1 ... z1) forall recparams2, forall ordparams2, H2b -> H2b... (I2 x2 y2 ... z2) we build: forall recparams1 (recparams2 without linked params), forall ordparams1 (ordparams2 without linked params), H1a' -> H2a' -> ... -> H2a' -> H2b' -> ... -> (newI x1 ... z1 x2 y2 ...z2 without linked params) where Hix' have been adapted, ie: - linked vars have been changed, - rec calls to I1 and I2 have been replaced by rec calls to newI. More precisely calls to I1 and I2 have been merge by an experimental heuristic (in particular if n o rec calls for I1 or I2 is found, we use the conclusion as a rec call). See [merge_types] above. Precond: vars sets of [typcstr1] and [typcstr2] must be disjoint. TODO: return nothing if equalities (after linking) are contradictory. *) let merge_one_constructor (shift:merge_infos) (typcstr1:rawconstr) (typcstr2:rawconstr) : rawconstr = (* FIXME: les noms des parametres corerspondent en principe au parametres du niveau mib, mais il faudrait s'en assurer *) (* shift.nfunresprmsx last args are functional result *) let nargs1 = shift.mib1.mind_nparams + shift.oib1.mind_nrealargs - shift.nfunresprms1 in let nargs2 = shift.mib2.mind_nparams + shift.oib2.mind_nrealargs - shift.nfunresprms2 in let allargs1,rest1 = raw_decompose_prod_n nargs1 typcstr1 in let allargs2,rest2 = raw_decompose_prod_n nargs2 typcstr2 in (* Build map of linked args of [typcstr2], and apply it to [typcstr2]. *) let linked_map = build_link_map allargs1 allargs2 shift.lnk2 in let rest2 = change_vars linked_map rest2 in let hyps1,concl1 = raw_decompose_prod rest1 in let hyps2,concl2' = raw_decompose_prod rest2 in let ltyp,concl2 = merge_types shift [] (List.rev hyps1) concl1 (List.rev hyps2) concl2' in let typ = raw_compose_prod concl2 (List.rev ltyp) in let revargs1 = list_filteri (fun i _ -> isArg_stable shift.lnk1.(i)) (List.rev allargs1) in let revargs2 = list_filteri (fun i _ -> isArg_stable shift.lnk2.(i)) (List.rev allargs2) in let typwithprms = raw_compose_prod typ (List.rev revargs2 @ List.rev revargs1) in typwithprms (** constructor numbering *) let fresh_cstror_suffix , cstror_suffix_init = let cstror_num = ref 0 in (fun () -> let res = string_of_int !cstror_num in cstror_num := !cstror_num + 1; res) , (fun () -> cstror_num := 0) (** [merge_constructor_id id1 id2 shift] returns the identifier of the new constructor from the id of the two merged constructor and the merging info. *) let merge_constructor_id id1 id2 shift:identifier = let id = string_of_id shift.ident ^ "_" ^ fresh_cstror_suffix () in next_ident_fresh (id_of_string id) (** [merge_constructors lnk shift avoid] merges the two list of constructor [(name*type)]. These are translated to rawterms first, each of them having distinct var names. *) let rec merge_constructors (shift:merge_infos) (avoid:Idset.t) (typcstr1:(identifier * types) list) (typcstr2:(identifier * types) list) : (identifier * rawconstr) list = List.flatten (List.map (fun (id1,typ1) -> let typ1 = substitterm 0 (mkRel 1) (mkVar ind1name) typ1 in let rawtyp1 = Detyping.detype false (Idset.elements avoid) [] typ1 in let idsoftyp1:Idset.t = ids_of_rawterm rawtyp1 in List.map (fun (id2,typ2) -> let typ2 = substitterm 0 (mkRel 1) (mkVar ind2name) typ2 in (* Avoid also rawtyp1 names *) let avoid2 = Idset.union avoid idsoftyp1 in let rawtyp2 = Detyping.detype false (Idset.elements avoid2) [] typ2 in let typ = merge_one_constructor shift rawtyp1 rawtyp2 in let newcstror_id = merge_constructor_id id1 id2 shift in newcstror_id , typ) typcstr2) typcstr1) (** [merge_inductive_body lnk shift avoid oib1 oib2] merges two inductive bodies [oib1] and [oib2], linking with [lnk], params info in [shift], avoiding identifiers in [avoid]. *) let rec merge_inductive_body (shift:merge_infos) avoid (oib1:one_inductive_body) (oib2:one_inductive_body) : (identifier * rawconstr) list = let lcstr1 = Array.to_list oib1.mind_user_lc in let lcstr2 = Array.to_list oib2.mind_user_lc in let lcstr1 = List.combine (Array.to_list oib1.mind_consnames) lcstr1 in let lcstr2 = List.combine (Array.to_list oib2.mind_consnames) lcstr2 in cstror_suffix_init(); merge_constructors shift avoid lcstr1 lcstr2 (** [build_raw_params prms_decl avoid] returns a list of variables attributed to the list of decl [prms_decl], avoiding names in [avoid]. *) let build_raw_params prms_decl avoid = let dummy_constr = compose_prod prms_decl mkProp in let dummy_rawconstr = Detyping.detype false avoid [] dummy_constr in let res,_ = raw_decompose_prod dummy_rawconstr in res , (avoid @ (Idset.elements (ids_of_rawterm dummy_rawconstr))) (** [merge_mutual_inductive_body lnk mib1 mib2 shift] merge mutual inductive bodies [mib1] and [mib2] linking vars with [lnk]. [shift] information on parameters of the new inductive. For the moment, inductives are supposed to be non mutual. *) let rec merge_mutual_inductive_body (mib1:mutual_inductive_body) (mib2:mutual_inductive_body) (shift:merge_infos) = (* Mutual not treated, we take first ind body of each. *) let nprms1 = mib1.mind_nparams_rec in (* n# of rec uniform parms of mib1 *) let prms1 = (* rec uniform parms of mib1 *) List.map (fun (x,_,y) -> x,y) (fst (list_chop nprms1 mib1.mind_params_ctxt)) in (* useless: *) let prms1_named,avoid' = build_raw_params prms1 [] in let prms2_named,avoid = build_raw_params prms1 avoid' in let avoid:Idset.t = List.fold_right Idset.add avoid Idset.empty in (* *** *) merge_inductive_body shift avoid mib1.mind_packets.(0) mib2.mind_packets.(0) let merge_rec_params_and_arity params1 params2 shift (concl:constr) = let params = shift.recprms1 @ shift.recprms2 in let resparams, _ = List.fold_left (fun (acc,env) (nme,_,tp) -> let typ = Constrextern.extern_constr false env tp in let newenv = Environ.push_rel (nme,None,tp) env in LocalRawAssum ([(dummy_loc,nme)] , typ) :: acc , newenv) ([],Global.env()) params in let concl = Constrextern.extern_constr false (Global.env()) concl in let arity,_ = List.fold_left (fun (acc,env) (nm,_,c) -> let typ = Constrextern.extern_constr false env c in let newenv = Environ.push_rel (nm,None,c) env in CProdN (dummy_loc, [[(dummy_loc,nm)],typ] , acc) , newenv) (concl,Global.env()) (shift.otherprms1@shift.otherprms2@shift.funresprms1@shift.funresprms2) in resparams,arity (** [rawterm_list_to_inductive_expr ident rawlist] returns the induct_expr corresponding to the the list of constructor types [rawlist], named ident. FIXME: params et cstr_expr (arity) *) let rawterm_list_to_inductive_expr mib1 mib2 shift (rawlist:(identifier * rawconstr) list):inductive_expr = let rawterm_to_constr_expr x = (* build a constr_expr from a rawconstr *) Options.with_option Options.raw_print (Constrextern.extern_rawtype Idset.empty) x in let lident = dummy_loc, shift.ident in let bindlist , cstr_expr = (* params , arities *) merge_rec_params_and_arity mib1.mind_params_ctxt mib2.mind_params_ctxt shift mkSet in let lcstor_expr : (bool * (lident * constr_expr)) list = List.map (* zeta_normalize t ? *) (fun (id,t) -> false, ((dummy_loc,id),rawterm_to_constr_expr t)) rawlist in lident , bindlist , cstr_expr , lcstor_expr (** [merge_inductive ind1 ind2 lnk] merges two graphs, linking variables specified in [lnk]. Graphs are not supposed to be mutual inductives for the moment. *) let merge_inductive (ind1: inductive) (ind2: inductive) (lnk1: linked_var array) (lnk2: linked_var array) id = let env = Global.env() in let mib1,_ = Inductive.lookup_mind_specif env ind1 in let mib2,_ = Inductive.lookup_mind_specif env ind2 in let _ = verify_inds mib1 mib2 in (* raises an exception if something wrong *) (* compute params that become ordinary args (because linked to ord. args) *) let shift_prm = shift_linked_params mib1 mib2 lnk1 lnk2 id in let rawlist = merge_mutual_inductive_body mib1 mib2 shift_prm in let indexpr = rawterm_list_to_inductive_expr mib1 mib2 shift_prm rawlist in (* Declare inductive *) Command.build_mutual [(indexpr,None)] true (* means: not coinductive *) let merge (cstr1:constr) (cstr2:constr) (args1:constr array) (args2:constr array) id = let env = Global.env() in let ind1,_cstrlist1 = Inductiveops.find_inductive env Evd.empty cstr1 in let ind2,_cstrlist2 = Inductiveops.find_inductive env Evd.empty cstr2 in let lnk1 = (* args1 are unlinked. FIXME? mergescheme (G x x) ?? *) Array.mapi (fun i c -> Unlinked) args1 in let _ = lnk1.(Array.length lnk1 - 1) <- Funres in (* last arg is functional result *) let lnk2 = (* args2 may be linked to args1 members. FIXME: same as above: vars may be linked inside args2?? *) Array.mapi (fun i c -> match array_find args1 (fun i x -> x=c) with | Some j -> Linked j | None -> Unlinked) args2 in let _ = lnk2.(Array.length lnk2 - 1) <- Funres in (* last arg is functional result *) let resa = merge_inductive ind1 ind2 lnk1 lnk2 id in resa (* @article{ bundy93rippling, author = "Alan Bundy and Andrew Stevens and Frank van Harmelen and Andrew Ireland and Alan Smaill", title = "Rippling: A Heuristic for Guiding Inductive Proofs", journal = "Artificial Intelligence", volume = "62", number = "2", pages = "185-253", year = "1993", url = "citeseer.ist.psu.edu/bundy93rippling.html" } *) (* *** Local Variables: *** *** compile-command: "make -C ../.. contrib/funind/merge.cmo" *** *** indent-tabs-mode: nil *** *** End: *** *)