Require Import ZArith. Require Import Classical. (* First example with the 0 and the equality translated *) Goal 0 = 0. zenon. Qed. (* Examples in the Propositional Calculus and theory of equality *) Parameter A C : Prop. Goal A -> A. zenon. Qed. Goal A -> (A \/ C). zenon. Qed. Parameter x y z : Z. Goal x = y -> y = z -> x = z. zenon. Qed. Goal ((((A -> C) -> A) -> A) -> C) -> C. zenon. Qed. (* Arithmetic *) Open Scope Z_scope. Goal 1 + 1 = 2. simplify. Qed. Goal 2*x + 10 = 18 -> x = 4. simplify. Qed. (* Universal quantifier *) Goal (forall (x y : Z), x = y) -> 0=1. try zenon. simplify. Qed. Goal forall (x: nat), (x + 0 = x)%nat. induction x0. zenon. zenon. Qed. (* No decision procedure can solve this problem Goal forall (x a b : Z), a * x + b = 0 -> x = - b/a. *) (* Functions definitions *) Definition fst (x y : Z) : Z := x. Goal forall (g : Z -> Z) (x y : Z), g (fst x y) = g x. simplify. Qed. (* Eta-expansion example *) Definition snd_of_3 (x y z : Z) : Z := y. Definition f : Z -> Z -> Z := snd_of_3 0. Goal forall (x y z z1 : Z), snd_of_3 x y z = f y z1. simplify. Qed. (* Inductive types definitions - call to incontrib/dp/jection function *) Inductive even : Z -> Prop := | even_0 : even 0 | even_plus2 : forall z : Z, even z -> even (z + 2). (* Simplify and Zenon can't prove this goal before the timeout unlike CVC Lite *) Goal even 4. cvcl. Qed. Definition skip_z (z : Z) (n : nat) := n. Definition skip_z1 := skip_z. Goal forall (z : Z) (n : nat), skip_z z n = skip_z1 z n. zenon. Qed. (* Axioms definitions and dp_hint *) Parameter add : nat -> nat -> nat. Axiom add_0 : forall (n : nat), add 0%nat n = n. Axiom add_S : forall (n1 n2 : nat), add (S n1) n2 = S (add n1 n2). Dp_hint add_0. Dp_hint add_S. (* Simplify can't prove this goal before the timeout unlike zenon *) Goal forall n : nat, add n 0 = n. induction n ; zenon. Qed. Definition pred (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => n' end. Goal forall n : nat, n <> 0%nat -> pred (S n) <> 0%nat. zenon. Qed. Fixpoint plus (n m : nat) {struct n} : nat := match n with | 0%nat => m | S n' => S (plus n' m) end. Goal forall n : nat, plus n 0%nat = n. induction n; zenon. Qed. (* Mutually recursive functions *) Fixpoint even_b (n : nat) : bool := match n with | O => true | S m => odd_b m end with odd_b (n : nat) : bool := match n with | O => false | S m => even_b m end. Goal even_b (S (S O)) = true. zenon. Qed. (* sorts issues *) Parameter foo : Set. Parameter ff : nat -> foo -> foo -> nat. Parameter g : foo -> foo. Goal (forall x:foo, ff 0 x x = O) -> forall y, ff 0 (g y) (g y) = O. zenon. Qed. (* abstractions *) Parameter poly_f : forall A:Set, A->A. Goal forall x:nat, poly_f nat x = poly_f nat x. zenon. Qed. (* Anonymous mutually recursive functions : no equations are produced Definition mrf := fix even2 (n : nat) : bool := match n with | O => true | S m => odd2 m end with odd2 (n : nat) : bool := match n with | O => false | S m => even2 m end for even. Thus this goal is unsolvable Goal mrf (S (S O)) = true. zenon. *)