(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* t -> int val hash : t -> int end module SetMake(M : HashedType) = struct (** Hash Sets use hashes to prevent doing too many comparison tests. They associate to each hash the set of keys having that hash. Invariants: 1. There is no empty set in the intmap. 2. All values in the same set have the same hash, which is the int to which it is associated in the intmap. *) module Set = Set.Make(M) type elt = M.t type t = Set.t Int.Map.t let empty = Int.Map.empty let is_empty = Int.Map.is_empty let mem x s = let h = M.hash x in try let m = Int.Map.find h s in Set.mem x m with Not_found -> false let add x s = let h = M.hash x in try let m = Int.Map.find h s in let m = Set.add x m in Int.Map.set h m s with Not_found -> let m = Set.singleton x in Int.Map.add h m s let singleton x = let h = M.hash x in let m = Set.singleton x in Int.Map.singleton h m let remove x s = let h = M.hash x in try let m = Int.Map.find h s in let m = Set.remove x m in if Set.is_empty m then Int.Map.remove h s else Int.Map.set h m s with Not_found -> s let height s = Int.Map.height s let is_smaller s1 s2 = height s1 <= height s2 + 3 (** Assumes s1 << s2 *) let fast_union s1 s2 = let fold h s accu = try Int.Map.modify h (fun _ s' -> Set.fold Set.add s s') accu with Not_found -> Int.Map.add h s accu in Int.Map.fold fold s1 s2 let union s1 s2 = if is_smaller s1 s2 then fast_union s1 s2 else if is_smaller s2 s1 then fast_union s2 s1 else let fu _ m1 m2 = match m1, m2 with | None, None -> None | (Some _ as m), None | None, (Some _ as m) -> m | Some m1, Some m2 -> Some (Set.union m1 m2) in Int.Map.merge fu s1 s2 (** Assumes s1 << s2 *) let fast_inter s1 s2 = let fold h s accu = try let s' = Int.Map.find h s2 in let si = Set.filter (fun e -> Set.mem e s') s in if Set.is_empty si then accu else Int.Map.add h si accu with Not_found -> accu in Int.Map.fold fold s1 Int.Map.empty let inter s1 s2 = if is_smaller s1 s2 then fast_inter s1 s2 else if is_smaller s2 s1 then fast_inter s2 s1 else let fu _ m1 m2 = match m1, m2 with | None, None -> None | Some _, None | None, Some _ -> None | Some m1, Some m2 -> let m = Set.inter m1 m2 in if Set.is_empty m then None else Some m in Int.Map.merge fu s1 s2 (** Assumes s1 << s2 *) let fast_diff_l s1 s2 = let fold h s accu = try let s' = Int.Map.find h s2 in let si = Set.filter (fun e -> not (Set.mem e s')) s in if Set.is_empty si then accu else Int.Map.add h si accu with Not_found -> Int.Map.add h s accu in Int.Map.fold fold s1 Int.Map.empty (** Assumes s2 << s1 *) let fast_diff_r s1 s2 = let fold h s accu = try let s' = Int.Map.find h accu in let si = Set.filter (fun e -> not (Set.mem e s)) s' in if Set.is_empty si then Int.Map.remove h accu else Int.Map.set h si accu with Not_found -> accu in Int.Map.fold fold s2 s1 let diff s1 s2 = if is_smaller s1 s2 then fast_diff_l s1 s2 else if is_smaller s2 s2 then fast_diff_r s1 s2 else let fu _ m1 m2 = match m1, m2 with | None, None -> None | (Some _ as m), None -> m | None, Some _ -> None | Some m1, Some m2 -> let m = Set.diff m1 m2 in if Set.is_empty m then None else Some m in Int.Map.merge fu s1 s2 let compare s1 s2 = Int.Map.compare Set.compare s1 s2 let equal s1 s2 = Int.Map.equal Set.equal s1 s2 let subset s1 s2 = let check h m1 = let m2 = try Int.Map.find h s2 with Not_found -> Set.empty in Set.subset m1 m2 in Int.Map.for_all check s1 let iter f s = let fi _ m = Set.iter f m in Int.Map.iter fi s let fold f s accu = let ff _ m accu = Set.fold f m accu in Int.Map.fold ff s accu let for_all f s = let ff _ m = Set.for_all f m in Int.Map.for_all ff s let exists f s = let fe _ m = Set.exists f m in Int.Map.exists fe s let filter f s = let ff m = Set.filter f m in let s = Int.Map.map ff s in Int.Map.filter (fun _ m -> not (Set.is_empty m)) s let partition f s = let fold h m (sl, sr) = let (ml, mr) = Set.partition f m in let sl = if Set.is_empty ml then sl else Int.Map.add h ml sl in let sr = if Set.is_empty mr then sr else Int.Map.add h mr sr in (sl, sr) in Int.Map.fold fold s (Int.Map.empty, Int.Map.empty) let cardinal s = let fold _ m accu = accu + Set.cardinal m in Int.Map.fold fold s 0 let elements s = let fold _ m accu = Set.fold (fun x accu -> x :: accu) m accu in Int.Map.fold fold s [] let min_elt _ = assert false (** Cannot be implemented efficiently *) let max_elt _ = assert false (** Cannot be implemented efficiently *) let choose s = let (_, m) = Int.Map.choose s in Set.choose m let split s x = assert false (** Cannot be implemented efficiently *) end module Make(M : HashedType) = struct (** This module is essentially the same as SetMake, except that we have maps instead of sets in the intmap. Invariants are the same. *) module Set = SetMake(M) module Map = CMap.Make(M) type key = M.t type 'a t = 'a Map.t Int.Map.t let empty = Int.Map.empty let is_empty = Int.Map.is_empty let mem k s = let h = M.hash k in try let m = Int.Map.find h s in Map.mem k m with Not_found -> false let add k x s = let h = M.hash k in try let m = Int.Map.find h s in let m = Map.add k x m in Int.Map.set h m s with Not_found -> let m = Map.singleton k x in Int.Map.add h m s (* when Coq requires OCaml 4.06 or later, the module type CSig.MapS may include the signature of OCaml's "update", requiring an implementation here, which could be just: let update k f s = assert false (* not implemented *) *) let singleton k x = let h = M.hash k in Int.Map.singleton h (Map.singleton k x) let remove k s = let h = M.hash k in try let m = Int.Map.find h s in let m = Map.remove k m in if Map.is_empty m then Int.Map.remove h s else Int.Map.set h m s with Not_found -> s let merge f s1 s2 = let fm h m1 m2 = match m1, m2 with | None, None -> None | Some m, None -> let m = Map.merge f m Map.empty in if Map.is_empty m then None else Some m | None, Some m -> let m = Map.merge f Map.empty m in if Map.is_empty m then None else Some m | Some m1, Some m2 -> let m = Map.merge f m1 m2 in if Map.is_empty m then None else Some m in Int.Map.merge fm s1 s2 let compare f s1 s2 = let fc m1 m2 = Map.compare f m1 m2 in Int.Map.compare fc s1 s2 let equal f s1 s2 = let fe m1 m2 = Map.equal f m1 m2 in Int.Map.equal fe s1 s2 let iter f s = let fi _ m = Map.iter f m in Int.Map.iter fi s let fold f s accu = let ff _ m accu = Map.fold f m accu in Int.Map.fold ff s accu let for_all f s = let ff _ m = Map.for_all f m in Int.Map.for_all ff s let exists f s = let fe _ m = Map.exists f m in Int.Map.exists fe s let filter f s = let ff m = Map.filter f m in let s = Int.Map.map ff s in Int.Map.filter (fun _ m -> not (Map.is_empty m)) s let partition f s = let fold h m (sl, sr) = let (ml, mr) = Map.partition f m in let sl = if Map.is_empty ml then sl else Int.Map.add h ml sl in let sr = if Map.is_empty mr then sr else Int.Map.add h mr sr in (sl, sr) in Int.Map.fold fold s (Int.Map.empty, Int.Map.empty) let cardinal s = let fold _ m accu = accu + Map.cardinal m in Int.Map.fold fold s 0 let bindings s = let fold _ m accu = Map.fold (fun k x accu -> (k, x) :: accu) m accu in Int.Map.fold fold s [] let min_binding _ = assert false (** Cannot be implemented efficiently *) let max_binding _ = assert false (** Cannot be implemented efficiently *) let fold_left _ _ _ = assert false (** Cannot be implemented efficiently *) let fold_right _ _ _ = assert false (** Cannot be implemented efficiently *) let choose s = let (_, m) = Int.Map.choose s in Map.choose m let find k s = let h = M.hash k in let m = Int.Map.find h s in Map.find k m let get k s = try find k s with Not_found -> assert false let split k s = assert false (** Cannot be implemented efficiently *) let map f s = let fs m = Map.map f m in Int.Map.map fs s let mapi f s = let fs m = Map.mapi f m in Int.Map.map fs s let modify k f s = let h = M.hash k in let m = Int.Map.find h s in let m = Map.modify k f m in Int.Map.set h m s let bind f s = let fb m = Map.bind f m in Int.Map.map fb s let domain s = Int.Map.map Map.domain s let set k x s = let h = M.hash k in let m = Int.Map.find h s in let m = Map.set k x m in Int.Map.set h m s module Smart = struct let map f s = let fs m = Map.Smart.map f m in Int.Map.Smart.map fs s let mapi f s = let fs m = Map.Smart.mapi f m in Int.Map.Smart.map fs s end let smartmap = Smart.map let smartmapi = Smart.mapi let height s = Int.Map.height s module Unsafe = struct let map f s = let fs m = Map.Unsafe.map f m in Int.Map.map fs s end module Monad(M : CMap.MonadS) = struct module IntM = Int.Map.Monad(M) module ExtM = Map.Monad(M) let fold f s accu = let ff _ m accu = ExtM.fold f m accu in IntM.fold ff s accu let fold_left _ _ _ = assert false let fold_right _ _ _ = assert false end end