(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* let rec aux j l n = if Int.equal j size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10) in String.concat "" (aux 0 [] n) (* The base is 10^size *) let base = let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size (******************************************************************) (* First, we represent all numbers by int arrays. Later, we will optimize the particular case of small integers *) (******************************************************************) module ArrayInt = struct (* Basic numbers *) let zero = [||] let is_zero = function | [||] -> true | _ -> false (* An array is canonical when - it is empty - it is [|-1|] - its first bloc is in [-base;-1[U]0;base[ and the other blocs are in [0;base[. *) (* let canonical n = let ok x = (0 <= x && x < base) in let rec ok_tail k = (Int.equal k 0) || (ok n.(k) && ok_tail (k-1)) in let ok_init x = (-base <= x && x < base && not (Int.equal x (-1)) && not (Int.equal x 0)) in (is_zero n) || (match n with [|-1|] -> true | _ -> false) || (ok_init n.(0) && ok_tail (Array.length n - 1)) *) (* [normalize_pos] : removing initial blocks of 0 *) let normalize_pos n = let k = ref 0 in while !k < Array.length n && Int.equal n.(!k) 0 do incr k done; Array.sub n !k (Array.length n - !k) (* [normalize_neg] : avoid (-1) as first bloc. input: an array with -1 as first bloc and other blocs in [0;base[ output: a canonical array *) let normalize_neg n = let k = ref 1 in while !k < Array.length n && Int.equal n.(!k) (base - 1) do incr k done; let n' = Array.sub n !k (Array.length n - !k) in if Int.equal (Array.length n') 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n') (* [normalize] : avoid 0 and (-1) as first bloc. input: an array with first bloc in [-base;base[ and others in [0;base[ output: a canonical array *) let normalize n = if Int.equal (Array.length n) 0 then n else if Int.equal n.(0) (-1) then normalize_neg n else if Int.equal n.(0) 0 then normalize_pos n else n (* Opposite (expects and returns canonical arrays) *) let neg m = if is_zero m then zero else let n = Array.copy m in let i = ref (Array.length m - 1) in while !i > 0 && Int.equal n.(!i) 0 do decr i done; if Int.equal !i 0 then begin n.(0) <- - n.(0); (* n.(0) cannot be 0 since m is canonical *) if Int.equal n.(0) (-1) then normalize_neg n else if Int.equal n.(0) base then (n.(0) <- 0; Array.append [| 1 |] n) else n end else begin (* here n.(!i) <> 0, hence 0 < base - n.(!i) < base for n canonical *) n.(!i) <- base - n.(!i); decr i; while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done; (* since -base <= n.(0) <= base-1, hence -base <= -n.(0)-1 <= base-1 *) n.(0) <- - n.(0) - 1; (* since m is canonical, m.(0)<>0 hence n.(0)<>-1, and m=-1 is already handled above, so here m.(0)<>-1 hence n.(0)<>0 *) n end let push_carry r j = let j = ref j in while !j > 0 && r.(!j) < 0 do r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1 done; while !j > 0 && r.(!j) >= base do r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1 done; (* here r.(0) could be in [-2*base;2*base-1] *) if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r) else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r) else normalize r (* in case r.(0) is 0 or -1 *) let add_to r a j = if is_zero a then r else begin for i = Array.length r - 1 downto j+1 do r.(i) <- r.(i) + a.(i-j); if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1) done; r.(j) <- r.(j) + a.(0); push_carry r j end let add n m = let d = Array.length n - Array.length m in if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d) let sub_to r a j = if is_zero a then r else begin for i = Array.length r - 1 downto j+1 do r.(i) <- r.(i) - a.(i-j); if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1) done; r.(j) <- r.(j) - a.(0); push_carry r j end let sub n m = let d = Array.length n - Array.length m in if d >= 0 then sub_to (Array.copy n) m d else let r = neg m in add_to r n (Array.length r - Array.length n) let mult m n = if is_zero m || is_zero n then zero else let l = Array.length m + Array.length n in let r = Array.make l 0 in for i = Array.length m - 1 downto 0 do for j = Array.length n - 1 downto 0 do let p = m.(i) * n.(j) + r.(i+j+1) in let (q,s) = if p < 0 then (p + 1) / base - 1, (p + 1) mod base + base - 1 else p / base, p mod base in r.(i+j+1) <- s; if not (Int.equal q 0) then r.(i+j) <- r.(i+j) + q; done done; normalize r (* Comparisons *) let is_strictly_neg n = not (is_zero n) && n.(0) < 0 let is_strictly_pos n = not (is_zero n) && n.(0) > 0 let is_neg_or_zero n = is_zero n || n.(0) < 0 let is_pos_or_zero n = is_zero n || n.(0) > 0 (* Is m without its i first blocs less then n without its j first blocs ? Invariant : |m|-i = |n|-j *) let rec less_than_same_size m n i j = i < Array.length m && (m.(i) < n.(j) || (Int.equal m.(i) n.(j) && less_than_same_size m n (i+1) (j+1))) let less_than m n = if is_strictly_neg m then is_pos_or_zero n || Array.length m > Array.length n || (Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0) else is_strictly_pos n && (Array.length m < Array.length n || (Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0)) (* For this equality test it is critical that n and m are canonical *) let rec array_eq len v1 v2 i = if Int.equal len i then true else Int.equal v1.(i) v2.(i) && array_eq len v1 v2 (succ i) let equal m n = let lenm = Array.length m in let lenn = Array.length n in (Int.equal lenm lenn) && (array_eq lenm m n 0) (* Is m without its k top blocs less than n ? *) let less_than_shift_pos k m n = (Array.length m - k < Array.length n) || (Int.equal (Array.length m - k) (Array.length n) && less_than_same_size m n k 0) let rec can_divide k m d i = (Int.equal i (Array.length d)) || (m.(k+i) > d.(i)) || (Int.equal m.(k+i) d.(i) && can_divide k m d (i+1)) (* For two big nums m and d and a small number q, computes m - d * q * base^(|m|-|d|-k) in-place (in m). Both m d and q are positive. *) let sub_mult m d q k = if not (Int.equal q 0) then for i = Array.length d - 1 downto 0 do let v = d.(i) * q in m.(k+i) <- m.(k+i) - v mod base; if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1); if v >= base then begin m.(k+i-1) <- m.(k+i-1) - v / base; let j = ref (i-1) in while m.(k + !j) < 0 do (* result is positive, hence !j remains >= 0 *) m.(k + !j) <- m.(k + !j) + base; decr j; m.(k + !j) <- m.(k + !j) -1 done end done (** Euclid division m/d = (q,r), with m = q*d+r and |r|<|q|. This is the "Trunc" variant (a.k.a "Truncated-Toward-Zero"), as with ocaml's / (but not as ocaml's Big_int.quomod_big_int). We have sign r = sign m *) let euclid m d = let isnegm, m = if is_strictly_neg m then (-1),neg m else 1,Array.copy m in let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in if is_zero d then raise Division_by_zero; let q,r = if less_than m d then (zero,m) else let ql = Array.length m - Array.length d in let q = Array.make (ql+1) 0 in let i = ref 0 in while not (less_than_shift_pos !i m d) do if Int.equal m.(!i) 0 then incr i else if can_divide !i m d 0 then begin let v = if Array.length d > 1 && not (Int.equal d.(0) m.(!i)) then (m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1) else m.(!i) / d.(0) in q.(!i) <- q.(!i) + v; sub_mult m d v !i end else begin let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in q.(!i) <- q.(!i) + v / base; sub_mult m d (v / base) !i; q.(!i+1) <- q.(!i+1) + v mod base; if q.(!i+1) >= base then (q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1); sub_mult m d (v mod base) (!i+1) end done; (normalize q, normalize m) in (if Int.equal (isnegd * isnegm) (-1) then neg q else q), (if Int.equal isnegm (-1) then neg r else r) (* Parsing/printing ordinary 10-based numbers *) let of_string s = let len = String.length s in let isneg = len > 1 && s.[0] == '-' in let d = ref (if isneg then 1 else 0) in while !d < len && s.[!d] == '0' do incr d done; if Int.equal !d len then zero else let r = (len - !d) mod size in let h = String.sub s (!d) r in let e = match h with "" -> 0 | _ -> 1 in let l = (len - !d) / size in let a = Array.make (l + e) 0 in if Int.equal e 1 then a.(0) <- int_of_string h; for i = 1 to l do a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size) done; if isneg then neg a else a let to_string_pos sgn n = if Int.equal (Array.length n) 0 then "0" else sgn ^ String.concat "" (string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n))) let to_string n = if is_strictly_neg n then to_string_pos "-" (neg n) else to_string_pos "" n end (******************************************************************) (* Optimized operations on (unbounded) integer numbers *) (* integers smaller than base are represented as machine integers *) (******************************************************************) open ArrayInt type bigint = Obj.t (* Since base is the largest power of 10 such that base*base <= max_int, we have max_int < 100*base*base : any int can be represented by at most three blocs *) let small n = (-base <= n) && (n < base) let mkarray n = (* n isn't small, this case is handled separately below *) let lo = n mod base and hi = n / base in let t = if small hi then [|hi;lo|] else [|hi/base;hi mod base;lo|] in for i = Array.length t -1 downto 1 do if t.(i) < 0 then (t.(i) <- t.(i) + base; t.(i-1) <- t.(i-1) -1) done; t let ints_of_int n = if Int.equal n 0 then [| |] else if small n then [| n |] else mkarray n let of_int n = if small n then Obj.repr n else Obj.repr (mkarray n) let of_ints n = let n = normalize n in (* TODO: using normalize here seems redundant now *) if is_zero n then Obj.repr 0 else if Int.equal (Array.length n) 1 then Obj.repr n.(0) else Obj.repr n let coerce_to_int = (Obj.magic : Obj.t -> int) let coerce_to_ints = (Obj.magic : Obj.t -> int array) let to_ints n = if Obj.is_int n then ints_of_int (coerce_to_int n) else coerce_to_ints n let int_of_ints = let maxi = mkarray max_int and mini = mkarray min_int in fun t -> let l = Array.length t in if (l > 3) || (Int.equal l 3 && (less_than maxi t || less_than t mini)) then failwith "Bigint.to_int: too large"; let sum = ref 0 in let pow = ref 1 in for i = l-1 downto 0 do sum := !sum + t.(i) * !pow; pow := !pow*base; done; !sum let to_int n = if Obj.is_int n then coerce_to_int n else int_of_ints (coerce_to_ints n) let app_pair f (m, n) = (f m, f n) let add m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m + coerce_to_int n) else of_ints (add (to_ints m) (to_ints n)) let sub m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m - coerce_to_int n) else of_ints (sub (to_ints m) (to_ints n)) let mult m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m * coerce_to_int n) else of_ints (mult (to_ints m) (to_ints n)) let euclid m n = if Obj.is_int m && Obj.is_int n then app_pair of_int (coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n) else app_pair of_ints (euclid (to_ints m) (to_ints n)) let less_than m n = if Obj.is_int m && Obj.is_int n then coerce_to_int m < coerce_to_int n else less_than (to_ints m) (to_ints n) let neg n = if Obj.is_int n then of_int (- (coerce_to_int n)) else of_ints (neg (to_ints n)) let of_string m = of_ints (of_string m) let to_string m = to_string (to_ints m) let zero = of_int 0 let one = of_int 1 let two = of_int 2 let sub_1 n = sub n one let add_1 n = add n one let mult_2 n = add n n let div2_with_rest n = let (q,b) = euclid n two in (q, b == one) let is_strictly_neg n = is_strictly_neg (to_ints n) let is_strictly_pos n = is_strictly_pos (to_ints n) let is_neg_or_zero n = is_neg_or_zero (to_ints n) let is_pos_or_zero n = is_pos_or_zero (to_ints n) let equal m n = if Obj.is_block m && Obj.is_block n then ArrayInt.equal (Obj.obj m) (Obj.obj n) else m == n (* spiwack: computes n^m *) (* The basic idea of the algorithm is that n^(2m) = (n^2)^m *) (* In practice the algorithm performs : k*n^0 = k k*n^(2m) = k*(n*n)^m k*n^(2m+1) = (n*k)*(n*n)^m *) let pow = let rec pow_aux odd_rest n m = (* odd_rest is the k from above *) if m<=0 then odd_rest else let quo = m lsr 1 (* i.e. m/2 *) and odd = not (Int.equal (m land 1) 0) in pow_aux (if odd then mult n odd_rest else odd_rest) (mult n n) quo in pow_aux one (** Testing suite w.r.t. OCaml's Big_int *) (* module B = struct open Big_int let zero = zero_big_int let to_string = string_of_big_int let of_string = big_int_of_string let add = add_big_int let opp = minus_big_int let sub = sub_big_int let mul = mult_big_int let abs = abs_big_int let sign = sign_big_int let euclid n m = let n' = abs n and m' = abs m in let q',r' = quomod_big_int n' m' in (if sign (mul n m) < 0 && sign q' <> 0 then opp q' else q'), (if sign n < 0 then opp r' else r') end let check () = let roots = [ 1; 100; base; 100*base; base*base ] in let rands = [ 1234; 5678; 12345678; 987654321 ] in let nums = (List.flatten (List.map (fun x -> [x-1;x;x+1]) roots)) @ rands in let numbers = List.map string_of_int nums @ List.map (fun n -> string_of_int (-n)) nums in let i = ref 0 in let compare op x y n n' = incr i; let s = Printf.sprintf "%30s" (to_string n) in let s' = Printf.sprintf "%30s" (B.to_string n') in if s <> s' then Printf.printf "%s%s%s: %s <> %s\n" x op y s s' in let test x y = let n = of_string x and m = of_string y in let n' = B.of_string x and m' = B.of_string y in let a = add n m and a' = B.add n' m' in let s = sub n m and s' = B.sub n' m' in let p = mult n m and p' = B.mul n' m' in let q,r = try euclid n m with Division_by_zero -> zero,zero and q',r' = try B.euclid n' m' with Division_by_zero -> B.zero, B.zero in compare "+" x y a a'; compare "-" x y s s'; compare "*" x y p p'; compare "/" x y q q'; compare "%" x y r r' in List.iter (fun a -> List.iter (test a) numbers) numbers; Printf.printf "%i tests done\n" !i *)