(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* true | Set, Set -> true | Level (n,d), Level (n',d') -> Int.equal n n' && DirPath.equal d d' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (i1, dp1), Level (i2, dp2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m open Hashset.Combine let hash = function | Prop -> combinesmall 1 0 | Set -> combinesmall 1 1 | Var n -> combinesmall 2 n | Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d)) end module Level = struct open Names type raw_level = RawLevel.t = | Prop | Set | Level of int * DirPath.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data let make l = { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let var i = make (Var i) let is_small x = match data x with | Level _ -> false | _ -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let compare u v = if u == v then 0 else let c = Int.compare (hash u) (hash v) in if c == 0 then RawLevel.compare (data u) (data v) else c let to_string x = match data x with | Prop -> "Prop" | Set -> "Set" | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n | Var i -> "Var("^string_of_int i^")" let pr u = str (to_string u) let make m n = make (Level (n, m)) end (** Level sets and maps *) module LMap = HMap.Make (Level) module LSet = struct include LMap.Set let pr s = str"{" ++ prlist_with_sep spc Level.pr (elements s) ++ str"}" end type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int let make l = (l, 0) let prop = (Level.prop, 0) let set = (Level.set, 0) let type1 = (Level.set, 1) let is_prop = function | (l,0) -> Level.is_prop l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let successor (u,n) = if Level.is_prop u then type1 else (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_prop u then (Level.set,n+k) else (u,n+k) let super (u,n as x) (v,n' as y) = let cmp = Level.compare u v in if Int.equal cmp 0 then if n < n' then Inl true else Inl false else if is_prop x then Inl true else if is_prop y then Inl false else Inr cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let level = function | (v,0) -> Some v | _ -> None let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then (Level.set, n) else (v', n) end type t = Expr.t list let tip u = [u] let cons u v = u :: v let equal x y = x == y || List.equal Expr.equal x y let make l = tip (Expr.make l) let pr l = match l with | [u] -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr l) ++ str ")" let level l = match l with | [l] -> Expr.level l | _ -> None (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip (Expr.successor Expr.set) let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies juste above the universe variable u. Used to type the sort u. *) let super l = List.map (fun x -> Expr.successor x) l let addn n l = List.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | [], _ -> l2 | _, [] -> l1 | h1 :: t1, h2 :: t2 -> (match Expr.super h1 h2 with | Inl true (* h1 < h2 *) -> merge_univs t1 l2 | Inl false -> merge_univs l1 t2 | Inr c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | b :: l' -> (match Expr.super a b with | Inl false -> aux a l' | Inl true -> l | Inr c -> if c <= 0 then cons a l else cons b (aux a l')) | [] -> cons a l in List.fold_right (fun a acc -> aux a acc) u [] (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let empty = [] let exists = List.exists let for_all = List.for_all let smart_map = List.Smart.map end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super open Universe (* Comparison on this type is pointer equality *) type canonical_arc = { univ: Level.t; lt: Level.t list; le: Level.t list; rank : int; predicative : bool} let terminal u = {univ=u; lt=[]; le=[]; rank=0; predicative=false} module UMap : sig type key = Level.t type +'a t val empty : 'a t val add : key -> 'a -> 'a t -> 'a t val find : key -> 'a t -> 'a val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b end = HMap.Make(Level) (* A Level.t is either an alias for another one, or a canonical one, for which we know the universes that are above *) type univ_entry = Canonical of canonical_arc | Equiv of Level.t type universes = univ_entry UMap.t let enter_equiv_arc u v g = UMap.add u (Equiv v) g let enter_arc ca g = UMap.add ca.univ (Canonical ca) g (* Every Level.t has a unique canonical arc representative *) (* repr : universes -> Level.t -> canonical_arc *) (* canonical representative : we follow the Equiv links *) let repr g u = let rec repr_rec u = let a = try UMap.find u g with Not_found -> anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined.") in match a with | Equiv v -> repr_rec v | Canonical arc -> arc in repr_rec u let get_set_arc g = repr g Level.set exception AlreadyDeclared let add_universe vlev strict g = try let _arcv = UMap.find vlev g in raise AlreadyDeclared with Not_found -> let v = terminal vlev in let arc = let arc = get_set_arc g in if strict then { arc with lt=vlev::arc.lt} else { arc with le=vlev::arc.le} in let g = enter_arc arc g in enter_arc v g (* reprleq : canonical_arc -> canonical_arc list *) (* All canonical arcv such that arcu<=arcv with arcv#arcu *) let reprleq g arcu = let rec searchrec w = function | [] -> w | v :: vl -> let arcv = repr g v in if List.memq arcv w || arcu==arcv then searchrec w vl else searchrec (arcv :: w) vl in searchrec [] arcu.le (* between : Level.t -> canonical_arc -> canonical_arc list *) (* between u v = { w | u<=w<=v, w canonical } *) (* between is the most costly operation *) let between g arcu arcv = (* good are all w | u <= w <= v *) (* bad are all w | u <= w ~<= v *) (* find good and bad nodes in {w | u <= w} *) (* explore b u = (b or "u is good") *) let rec explore ((good, bad, b) as input) arcu = if List.memq arcu good then (good, bad, true) (* b or true *) else if List.memq arcu bad then input (* (good, bad, b or false) *) else let leq = reprleq g arcu in (* is some universe >= u good ? *) let good, bad, b_leq = List.fold_left explore (good, bad, false) leq in if b_leq then arcu::good, bad, true (* b or true *) else good, arcu::bad, b (* b or false *) in let good,_,_ = explore ([arcv],[],false) arcu in good (* We assume compare(u,v) = LE with v canonical (see compare below). In this case List.hd(between g u v) = repr u Otherwise, between g u v = [] *) type constraint_type = Lt | Le | Eq let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ? In [strict] mode, we fully distinguish between LE and LT, while in non-strict mode, we simply answer LE for both situations. If [arcv] is encountered in a LT part, we could directly answer without visiting unneeded parts of this transitive closure. In [strict] mode, if [arcv] is encountered in a LE part, we could only change the default answer (1st arg [c]) from NLE to LE, since a strict constraint may appear later. During the recursive traversal, [lt_done] and [le_done] are universes we have already visited, they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)], two lists of universes not yet considered, known to be above [arcu], strictly or not. We use depth-first search, but the presence of [arcv] in [new_lt] is checked as soon as possible : this seems to be slightly faster on a test. *) type fast_order = FastEQ | FastLT | FastLE | FastNLE let fast_compare_neq strict g arcu arcv = (* [c] characterizes whether arcv has already been related to arcu among the lt_done,le_done universe *) let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with | [],[] -> c | arc::lt_todo, le_todo -> if List.memq arc lt_done then cmp c lt_done le_done lt_todo le_todo else let rec find lt_todo lt le = match le with | [] -> begin match lt with | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le end | u :: le -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le in find lt_todo arc.lt arc.le | [], arc::le_todo -> if arc == arcv then (* No need to continue inspecting universes above arc: if arcv is strictly above arc, then we would have a cycle. But we cannot answer LE yet, a stronger constraint may come later from [le_todo]. *) if strict then cmp FastLE lt_done le_done [] le_todo else FastLE else if (List.memq arc lt_done) || (List.memq arc le_done) then cmp c lt_done le_done [] le_todo else let rec find lt_todo lt = match lt with | [] -> let fold accu u = let node = repr g u in node :: accu in let le_new = List.fold_left fold le_todo arc.le in cmp c lt_done (arc :: le_done) lt_todo le_new | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt in find [] arc.lt in cmp FastNLE [] [] [] [arcu] let fast_compare g arcu arcv = if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv let is_leq g arcu arcv = arcu == arcv || (match fast_compare_neq false g arcu arcv with | FastNLE -> false | (FastEQ|FastLE|FastLT) -> true) let is_lt g arcu arcv = if arcu == arcv then false else match fast_compare_neq true g arcu arcv with | FastLT -> true | (FastEQ|FastLE|FastNLE) -> false (* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ compare(u,v) = LT or LE => compare(v,u) = NLE compare(u,v) = NLE => compare(v,u) = NLE or LE or LT Adding u>=v is consistent iff compare(v,u) # LT and then it is redundant iff compare(u,v) # NLE Adding u>v is consistent iff compare(v,u) = NLE and then it is redundant iff compare(u,v) = LT *) (** * Universe checks [check_eq] and [check_leq], used in coqchk *) (** First, checks on universe levels *) let check_equal g u v = let arcu = repr g u in let arcv = repr g v in arcu == arcv let check_eq_level g u v = u == v || check_equal g u v let is_set_arc u = Level.is_set u.univ let is_prop_arc u = Level.is_prop u.univ let check_smaller g strict u v = let arcu = repr g u in let arcv = repr g v in if strict then is_lt g arcu arcv else is_prop_arc arcu || (is_set_arc arcu && arcv.predicative) || is_leq g arcu arcv (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_equal_expr g x y = x == y || (let (u, n) = x and (v, m) = y in Int.equal n m && check_equal g u v) let check_eq_univs g l1 l2 = let f x1 x2 = check_equal_expr g x1 x2 in let exists x1 l = List.exists (fun x2 -> f x1 x2) l in List.for_all (fun x1 -> exists x1 l2) l1 && List.for_all (fun x2 -> exists x2 l1) l2 let check_eq g u v = Universe.equal u v || check_eq_univs g u v let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Universe.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Universe.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || Universe.is_type0m u || check_eq_univs g u v || real_check_leq g u v (** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *) (** To speed up tests of Set Level.t -> reason -> unit *) (* forces u > v *) (* this is normally an update of u in g rather than a creation. *) let setlt g arcu arcv = let arcu' = {arcu with lt=arcv.univ::arcu.lt} in let g = if is_set_arc arcu then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setlt_if (g,arcu) v = let arcv = repr g v in if is_lt g arcu arcv then g, arcu else setlt g arcu arcv (* setleq : Level.t -> Level.t -> unit *) (* forces u >= v *) (* this is normally an update of u in g rather than a creation. *) let setleq g arcu arcv = let arcu' = {arcu with le=arcv.univ::arcu.le} in let g = if is_set_arc arcu' then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setleq_if (g,arcu) v = let arcv = repr g v in if is_leq g arcu arcv then g, arcu else setleq g arcu arcv (* merge : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = LE *) (* merge u v forces u ~ v with repr u as canonical repr *) let merge g arcu arcv = (* we find the arc with the biggest rank, and we redirect all others to it *) let arcu, g, v = let best_ranked (max_rank, old_max_rank, best_arc, rest) arc = if Level.is_small arc.univ || arc.rank >= max_rank then (arc.rank, max_rank, arc, best_arc::rest) else (max_rank, old_max_rank, best_arc, arc::rest) in match between g arcu arcv with | [] -> anomaly (str "Univ.between.") | arc::rest -> let (max_rank, old_max_rank, best_arc, rest) = List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in if max_rank > old_max_rank then best_arc, g, rest else begin (* one redirected node also has max_rank *) let arcu = {best_arc with rank = max_rank + 1} in arcu, enter_arc arcu g, rest end in let redirect (g,w,w') arcv = let g' = enter_equiv_arc arcv.univ arcu.univ g in (g',List.unionq arcv.lt w,arcv.le@w') in let (g',w,w') = List.fold_left redirect (g,[],[]) v in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu w in let g_arcu = List.fold_left setleq_if g_arcu w' in fst g_arcu (* merge_disc : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = compare(v,u) = NLE *) (* merge_disc u v forces u ~ v with repr u as canonical repr *) let merge_disc g arc1 arc2 = let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in let arcu, g = if not (Int.equal arc1.rank arc2.rank) then arcu, g else let arcu = {arcu with rank = succ arcu.rank} in arcu, enter_arc arcu g in let g' = enter_equiv_arc arcv.univ arcu.univ g in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in let g_arcu = List.fold_left setleq_if g_arcu arcv.le in fst g_arcu (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v = raise (UniverseInconsistency (o,make u,make v)) (* enforc_univ_eq : Level.t -> Level.t -> unit *) (* enforc_univ_eq u v will force u=v if possible, will fail otherwise *) let enforce_univ_eq u v g = let arcu = repr g u in let arcv = repr g v in match fast_compare g arcu arcv with | FastEQ -> g | FastLT -> error_inconsistency Eq v u | FastLE -> merge g arcu arcv | FastNLE -> (match fast_compare g arcv arcu with | FastLT -> error_inconsistency Eq u v | FastLE -> merge g arcv arcu | FastNLE -> merge_disc g arcu arcv | FastEQ -> anomaly (Pp.str "Univ.compare.")) (* enforce_univ_leq : Level.t -> Level.t -> unit *) (* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let arcu = repr g u in let arcv = repr g v in if is_leq g arcu arcv then g else match fast_compare g arcv arcu with | FastLT -> error_inconsistency Le u v | FastLE -> merge g arcv arcu | FastNLE -> fst (setleq g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") (* enforce_univ_lt u v will force u g | FastLE -> fst (setlt g arcu arcv) | FastEQ -> error_inconsistency Lt u v | FastNLE -> match fast_compare_neq false g arcv arcu with FastNLE -> fst (setlt g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") | FastLE | FastLT -> error_inconsistency Lt u v (* Prop = Set is forbidden here. *) let initial_universes = let g = enter_arc (terminal Level.set) UMap.empty in let g = enter_arc (terminal Level.prop) g in enforce_univ_lt Level.prop Level.set g (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = fold (fun (u1,op,u2) pp_std -> pp_std ++ prl u1 ++ pr_constraint_type op ++ prl u2 ++ fnl () ) c (str "") end let empty_constraint = Constraint.empty let merge_constraints c g = Constraint.fold enforce_constraint c g type constraints = Constraint.t (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val equal : t -> t -> bool val subst_fn : universe_level_subst_fn -> t -> t val subst : universe_level_subst -> t -> t val pr : t -> Pp.t val check_eq : t check_function val length : t -> int val append : t -> t -> t val of_array : Level.t array -> t end = struct type t = Level.t array let empty = [||] let is_empty x = Int.equal (Array.length x) 0 let subst_fn fn t = let t' = CArray.Smart.map fn t in if t' == t then t else t' let subst s t = let t' = CArray.Smart.map (fun x -> try LMap.find x s with Not_found -> x) t in if t' == t then t else t' let pr = prvect_with_sep spc Level.pr let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) let check_eq g t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) let length = Array.length let append = Array.append let of_array i = i end (** Substitute instance inst for ctx in csts *) let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.Smart.map (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = Universe.smart_map f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty type universe_instance = Instance.t type 'a puniverses = 'a * Instance.t (** A context of universe levels with universe constraints, representiong local universe variables and constraints *) module UContext = struct type t = Instance.t constrained (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let make x = x let instance (univs, cst) = univs let constraints (univs, cst) = cst let size (univs, _) = Instance.length univs let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (Instance.pr univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) end type universe_context = UContext.t module AUContext = struct include UContext let repr (inst, cst) = (Array.mapi (fun i l -> Level.var i) inst, cst) let instantiate inst (u, cst) = assert (Array.length u = Array.length inst); subst_instance_constraints inst cst end type abstract_universe_context = AUContext.t module Variance = struct (** A universe position in the instance given to a cumulative inductive can be the following. Note there is no Contravariant case because [forall x : A, B <= forall x : A', B'] requires [A = A'] as opposed to [A' <= A]. *) type t = Irrelevant | Covariant | Invariant let check_subtype x y = match x, y with | (Irrelevant | Covariant | Invariant), Irrelevant -> true | Irrelevant, Covariant -> false | (Covariant | Invariant), Covariant -> true | (Irrelevant | Covariant), Invariant -> false | Invariant, Invariant -> true let leq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant -> Constraint.add (u, Le, u') csts | Invariant -> Constraint.add (u, Eq, u') csts let eq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant | Invariant -> Constraint.add (u, Eq, u') csts let leq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 leq_constraint csts variance u u' let eq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 eq_constraint csts variance u u' end module CumulativityInfo = struct type t = universe_context * Variance.t array let univ_context (univcst, subtypcst) = univcst let variance (univs, variance) = variance end module ACumulativityInfo = CumulativityInfo type abstract_cumulativity_info = ACumulativityInfo.t module ContextSet = struct type t = LSet.t constrained let empty = LSet.empty, Constraint.empty let constraints (_, cst) = cst let levels (ctx, _) = ctx let make ctx cst = (ctx, cst) end type universe_context_set = ContextSet.t (** Instance subtyping *) let check_subtype univs ctxT ctx = if AUContext.size ctx == AUContext.size ctx then let (inst, cst) = AUContext.repr ctx in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v false accu in let univs = Array.fold_left push univs inst in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Substitutions. *) let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smart_map f u in if u == u' then u else Universe.sort u' let make_abstract_instance (ctx, _) = Array.mapi (fun i l -> Level.var i) ctx (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = List.fold_right (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u)) substs nosubst let merge_context strict ctx g = let g = Array.fold_left (fun g v -> add_universe v strict g) g (UContext.instance ctx) in merge_constraints (UContext.constraints ctx) g let merge_context_set strict ctx g = let g = LSet.fold (* Include and side effects still have double-declared universes *) (fun v g -> try add_universe v strict g with AlreadyDeclared -> g) (ContextSet.levels ctx) g in merge_constraints (ContextSet.constraints ctx) g (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_arc = function | _, Canonical {univ=u; lt=[]; le=[]} -> mt () | _, Canonical {univ=u; lt=lt; le=le} -> let opt_sep = match lt, le with | [], _ | _, [] -> mt () | _ -> spc () in Level.pr u ++ str " " ++ v 0 (pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++ opt_sep ++ pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++ fnl () | u, Equiv v -> Level.pr u ++ str " = " ++ Level.pr v ++ fnl () let pr_universes g = let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in prlist pr_arc graph