open Pp open Util open Names open Term open Inductive open Reduction open Typeops open Indtypes open Modops open Subtyping open Declarations open Environ (************************************************************************) (* Checking constants *) let refresh_arity ar = let ctxt, hd = decompose_prod_assum ar in match hd with Sort (Type u) when not (Univ.is_univ_variable u) -> let u' = Univ.fresh_local_univ() in mkArity (ctxt,Type u'), Univ.enforce_geq u' u Univ.empty_constraint | _ -> ar, Univ.empty_constraint let check_constant_declaration env kn cb = Flags.if_verbose msgnl (str " checking cst: " ++ prcon kn); (* let env = add_constraints cb.const_constraints env in*) let env' = check_named_ctxt env cb.const_hyps in (match cb.const_type with NonPolymorphicType ty -> let ty, cu = refresh_arity ty in let envty = add_constraints cu env' in let _ = infer_type envty ty in (match body_of_constant cb with | Some bd -> let j = infer env' (force_constr bd) in conv_leq envty j ty | None -> ()) | PolymorphicArity(ctxt,par) -> let _ = check_ctxt env ctxt in check_polymorphic_arity env ctxt par); add_constant kn cb env (************************************************************************) (* Checking modules *) exception Not_path let path_of_mexpr = function | SEBident mp -> mp | _ -> raise Not_path let is_modular = function | SFBmodule _ | SFBmodtype _ -> true | SFBconst _ | SFBmind _ -> false let rec list_split_assoc ((k,m) as km) rev_before = function | [] -> raise Not_found | (k',b)::after when k=k' && is_modular b = m -> rev_before,b,after | h::tail -> list_split_assoc km (h::rev_before) tail let check_definition_sub env cb1 cb2 = let check_type env t1 t2 = (* If the type of a constant is generated, it may mention non-variable algebraic universes that the general conversion algorithm is not ready to handle. Anyway, generated types of constants are functions of the body of the constant. If the bodies are the same in environments that are subtypes one of the other, the types are subtypes too (i.e. if Gamma <= Gamma', Gamma |- A |> T, Gamma |- A' |> T' and Gamma |- A=A' then T <= T'). Hence they don't have to be checked again *) let t1,t2 = if isArity t2 then let (ctx2,s2) = destArity t2 in match s2 with | Type v when not (Univ.is_univ_variable v) -> (* The type in the interface is inferred and is made of algebraic universes *) begin try let (ctx1,s1) = dest_arity env t1 in match s1 with | Type u when not (Univ.is_univ_variable u) -> (* Both types are inferred, no need to recheck them. We cheat and collapse the types to Prop *) mkArity (ctx1,Prop Null), mkArity (ctx2,Prop Null) | Prop _ -> (* The type in the interface is inferred, it may be the case that the type in the implementation is smaller because the body is more reduced. We safely collapse the upper type to Prop *) mkArity (ctx1,Prop Null), mkArity (ctx2,Prop Null) | Type _ -> (* The type in the interface is inferred and the type in the implementation is not inferred or is inferred but from a more reduced body so that it is just a variable. Since constraints of the form "univ <= max(...)" are not expressible in the system of algebraic universes: we fail (the user has to use an explicit type in the interface *) raise Reduction.NotConvertible with UserError _ (* "not an arity" *) -> raise Reduction.NotConvertible end | _ -> t1,t2 else (t1,t2) in Reduction.conv_leq env t1 t2 in assert (cb1.const_hyps=[] && cb2.const_hyps=[]) ; (*Start by checking types*) let typ1 = Typeops.type_of_constant_type env cb1.const_type in let typ2 = Typeops.type_of_constant_type env cb2.const_type in check_type env typ1 typ2; (* In the spirit of subtyping.check_constant, we accept any implementations of parameters and opaques terms, as long as they have the right type *) (match cb2.const_body with | Undef _ | OpaqueDef _ -> () | Def lc2 -> (match cb1.const_body with | Def lc1 -> let c1 = force_constr lc1 in let c2 = force_constr lc2 in Reduction.conv env c1 c2 (* Coq only places transparent cb in With_definition_body *) | _ -> assert false)) let lookup_modtype mp env = try Environ.lookup_modtype mp env with Not_found -> failwith ("Unknown module type: "^string_of_mp mp) let rec check_with env mtb with_decl mp= match with_decl with | With_definition_body (idl,c) -> check_with_def env mtb (idl,c) mp; mtb | With_module_body (idl,mp1) -> check_with_mod env mtb (idl,mp1) mp; mtb and check_with_def env mtb (idl,c) mp = let sig_b = match mtb with | SEBstruct(sig_b) -> sig_b | _ -> error_signature_expected mtb in let id,idl = match idl with | [] -> assert false | id::idl -> id,idl in let l = label_of_id id in try let rev_before,spec,after = list_split_assoc (l,(idl<>[])) [] sig_b in let before = List.rev rev_before in let env' = Modops.add_signature mp before empty_delta_resolver env in if idl = [] then let cb = match spec with SFBconst cb -> cb | _ -> error_not_a_constant l in check_definition_sub env' c cb else let old = match spec with SFBmodule msb -> msb | _ -> error_not_a_module l in begin match old.mod_expr with | None -> check_with_def env' old.mod_type (idl,c) (MPdot(mp,l)) | Some msb -> error_a_generative_module_expected l end with Not_found -> error_no_such_label l | Reduction.NotConvertible -> error_with_incorrect l and check_with_mod env mtb (idl,mp1) mp = let sig_b = match mtb with | SEBstruct(sig_b) -> sig_b | _ -> error_signature_expected mtb in let id,idl = match idl with | [] -> assert false | id::idl -> id,idl in let l = label_of_id id in try let rev_before,spec,after = list_split_assoc (l,false) [] sig_b in let before = List.rev rev_before in let env' = Modops.add_signature mp before empty_delta_resolver env in if idl = [] then let _ = match spec with SFBmodule msb -> msb | _ -> error_not_a_module l in let (_:module_body) = (lookup_module mp1 env) in () else let old = match spec with SFBmodule msb -> msb | _ -> error_not_a_module l in begin match old.mod_expr with None -> check_with_mod env' old.mod_type (idl,mp1) (MPdot(mp,l)) | Some msb -> error_a_generative_module_expected l end with Not_found -> error_no_such_label l | Reduction.NotConvertible -> error_with_incorrect l and check_module_type env mty = let (_:struct_expr_body) = check_modtype env mty.typ_expr mty.typ_mp mty.typ_delta in () and check_module env mp mb = match mb.mod_expr, mb.mod_type with | None,mtb -> let (_:struct_expr_body) = check_modtype env mtb mb.mod_mp mb.mod_delta in () | Some mexpr, mtb when mtb==mexpr -> let (_:struct_expr_body) = check_modtype env mtb mb.mod_mp mb.mod_delta in () | Some mexpr, _ -> let sign = check_modexpr env mexpr mb.mod_mp mb.mod_delta in let (_:struct_expr_body) = check_modtype env mb.mod_type mb.mod_mp mb.mod_delta in let mtb1 = {typ_mp=mp; typ_expr=sign; typ_expr_alg=None; typ_constraints=Univ.empty_constraint; typ_delta = mb.mod_delta;} and mtb2 = {typ_mp=mp; typ_expr=mb.mod_type; typ_expr_alg=None; typ_constraints=Univ.empty_constraint; typ_delta = mb.mod_delta;} in let env = add_module (module_body_of_type mp mtb1) env in check_subtypes env mtb1 mtb2 and check_structure_field env mp lab res = function | SFBconst cb -> let c = make_con mp empty_dirpath lab in check_constant_declaration env c cb | SFBmind mib -> let kn = make_mind mp empty_dirpath lab in let kn = mind_of_delta res kn in Indtypes.check_inductive env kn mib | SFBmodule msb -> let (_:unit) = check_module env (MPdot(mp,lab)) msb in Modops.add_module msb env | SFBmodtype mty -> check_module_type env mty; add_modtype (MPdot(mp,lab)) mty env and check_modexpr env mse mp_mse res = match mse with | SEBident mp -> let mb = lookup_module mp env in (subst_and_strengthen mb mp_mse).mod_type | SEBfunctor (arg_id, mtb, body) -> check_module_type env mtb ; let env' = add_module (module_body_of_type (MPbound arg_id) mtb) env in let sign = check_modexpr env' body mp_mse res in SEBfunctor (arg_id, mtb, sign) | SEBapply (f,m,cst) -> let sign = check_modexpr env f mp_mse res in let farg_id, farg_b, fbody_b = destr_functor env sign in let mp = try (path_of_mexpr m) with Not_path -> error_application_to_not_path m (* place for nondep_supertype *) in let mtb = module_type_of_module (Some mp) (lookup_module mp env) in check_subtypes env mtb farg_b; (subst_struct_expr (map_mbid farg_id mp) fbody_b) | SEBwith(mte, with_decl) -> let sign = check_modexpr env mte mp_mse res in let sign = check_with env sign with_decl mp_mse in sign | SEBstruct(msb) -> let (_:env) = List.fold_left (fun env (lab,mb) -> check_structure_field env mp_mse lab res mb) env msb in SEBstruct(msb) and check_modtype env mse mp_mse res = match mse with | SEBident mp -> let mtb = lookup_modtype mp env in mtb.typ_expr | SEBfunctor (arg_id, mtb, body) -> check_module_type env mtb; let env' = add_module (module_body_of_type (MPbound arg_id) mtb) env in let body = check_modtype env' body mp_mse res in SEBfunctor(arg_id,mtb,body) | SEBapply (f,m,cst) -> let sign = check_modtype env f mp_mse res in let farg_id, farg_b, fbody_b = destr_functor env sign in let mp = try (path_of_mexpr m) with Not_path -> error_application_to_not_path m (* place for nondep_supertype *) in let mtb = module_type_of_module (Some mp) (lookup_module mp env) in check_subtypes env mtb farg_b; subst_struct_expr (map_mbid farg_id mp) fbody_b | SEBwith(mte, with_decl) -> let sign = check_modtype env mte mp_mse res in let sign = check_with env sign with_decl mp_mse in sign | SEBstruct(msb) -> let (_:env) = List.fold_left (fun env (lab,mb) -> check_structure_field env mp_mse lab res mb) env msb in SEBstruct(msb) (* let rec add_struct_expr_constraints env = function | SEBident _ -> env | SEBfunctor (_,mtb,meb) -> add_struct_expr_constraints (add_modtype_constraints env mtb) meb | SEBstruct (_,structure_body) -> List.fold_left (fun env (l,item) -> add_struct_elem_constraints env item) env structure_body | SEBapply (meb1,meb2,cst) -> (* let g = Univ.merge_constraints cst Univ.initial_universes in msgnl(str"ADDING FUNCTOR APPLICATION CONSTRAINTS:"++fnl()++ Univ.pr_universes g++str"============="++fnl()); *) Environ.add_constraints cst (add_struct_expr_constraints (add_struct_expr_constraints env meb1) meb2) | SEBwith(meb,With_definition_body(_,cb))-> Environ.add_constraints cb.const_constraints (add_struct_expr_constraints env meb) | SEBwith(meb,With_module_body(_,_,cst))-> Environ.add_constraints cst (add_struct_expr_constraints env meb) and add_struct_elem_constraints env = function | SFBconst cb -> Environ.add_constraints cb.const_constraints env | SFBmind mib -> Environ.add_constraints mib.mind_constraints env | SFBmodule mb -> add_module_constraints env mb | SFBalias (mp,Some cst) -> Environ.add_constraints cst env | SFBalias (mp,None) -> env | SFBmodtype mtb -> add_modtype_constraints env mtb and add_module_constraints env mb = let env = match mb.mod_expr with | None -> env | Some meb -> add_struct_expr_constraints env meb in let env = match mb.mod_type with | None -> env | Some mtb -> add_struct_expr_constraints env mtb in Environ.add_constraints mb.mod_constraints env and add_modtype_constraints env mtb = add_struct_expr_constraints env mtb.typ_expr *)